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ABSTRACT

When learning from instructional videos, students frequently take

handwritten notes to improve recall and comprehension. When

reviewing their notes, it can be difficult to return to the correspond-

ing part of the video. In this paper, we present NoteLink, a mobile

application that allows students to take pictures of their notes to

re-find and play relevant videos on their smartphone or tablet. Our

study followed four phases. In Phase I, we identified the charac-

teristics of students’ notes by analyzing 10 engineering students’

handwritten notes taken while watching instructional videos. We

found: 1) students’ notes are comprised of four content types: text,

formula, drawing, and a hybrid of two or more types, 2) at least

75% of the notes, regardless of content type, manifest some degree

of verbatim overlap with the corresponding video content, and 3)

videos are referenced at three scales of temporal granularity: point,

interval, and whole video. In Phase II, we designed a prototype

mobile application, NoteLink, that retrieves instructional videos

that are similar to students’ notes. In Phase III, we ran a usability

study with 12 engineering students to evaluate their preferences

for the temporal granularity of retrieved videos and how search

results are displayed. Students reported a preference for matches at

the interval temporal granularity. Interviews with participants sug-

gest that NoteLink-like tools for re-finding instructional videos are

useful. In Phase IV, we evaluated the retrieval accuracy of NoteLink

using the data collected in Phase I. The overall accuracy was 78%,

and 98% for textual notes. We also provide design recommendations

for optimizing NoteLink.
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• Information systems→ Information retrieval; Users and in-

teractive retrieval; Search interfaces; • Applied computing →

Hypertext / hypermedia creation.

KEYWORDS

Handwritten Recognition, Re-Finding, Personal Information Man-

agement, Video-Based Learning, Note-Taking

Figure 1: NoteLink, a mobile interface, enables a student to

take a photo of their handwritten note (left) to find the cor-

responding video with topically similar content. The video

is then played back within the app (right).

1 INTRODUCTION

Note-taking by hand can improve recall and comprehension [25, 47].

It also facilitates more flexible writing and drawing than using a key-

board and mouse [37, 43]. Students take and review notes in many

learning situations, including during lectures and when preparing

for exams. However, learning from notes can be difficult when

the content is ambiguous [21, 52]. In these cases, students must

navigate from their notes back to the primary learning material.

When taking notes on instructional videos, some students write

down timecodes to create a link from their note to the video [9].

Unfortunately, it can still be challenging to match a timestamp to

a specific video when students learn from many videos. Further-

more, these links are time-consuming to create and can distract

from the learning activity. Previous work has found that students

frequently record verbatim notes in courses involving mathematics
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and engineering topics [47]. Facts, definitions, and, graphical repre-

sentations are often recorded with little or no paraphrasing [47].

We speculated that these types of notes could be used as cues to

aid the content-based retrieval of related videos.

In this paper, we present a feasibility study of whether paper-

based, handwritten notes can be linked to videos. We designed,

built, and evaluated NoteLink (Figure 1), a novel mobile application

that supports point and shoot linking between notes and videos.

Students take a picture of their notes, and NoteLink identifies the

content of the note and retries matching videos within a collection

of instructional videos. The highlights of our work are presented

below as answers to our three research questions:

(1) What are the distinctive attributes of notes taken as stu-

dents watch instructional videos? We performed a needs

assessment in Phase I, by collecting previously taken notes

of watched videos through a lab study with 10 engineering

students. We analyzed the types of notes students take while

learning with video and identified characteristics of the note

content that can be used to facilitate video retrieval.

(2) What is the preferred temporal granularity of the retrieved

video? In Phase II, we designed and built NoteLink, amedium-

fidelity prototype that recognizes the note content within

pictures of students’ notebooks then retrieves the match-

ing videos. In Phase III, we conducted a lab-based usability

study with 12 students to explore their preferences for and

against different temporal granularities of retrieved video

clips. We also investigate students’ preferences for various

video metadata in the video results.

(3) Can off-the-shelf handwritten text recognition APIs sup-

port these design requirements? In Phase IV, we present the

results of our evaluation of the accuracy of NoteLink.

Overall, this paper makes three contributions.

(1) We present NoteLink, a novel video retrieval system that

leverages handwritten notes as a query.

(2) We identify four types of handwritten note content (i.e., text,

formula, drawing, and hybrid) that can be used as cues for

finding relevant instructional videos.

(3) We showcase students’ preference for and against three dis-

tinct temporal granularities (i.e., point, interval, and whole

video) for displaying the videos.

2 RELATEDWORK

2.1 Hypermedia Linking

While a growing number of video-based learning systems have

been developed with features for textbook-style highlighting [12],

note-taking [28, 35], and tagging [10, 14], previous work suggests

that video-based learning occurs in coordination with other media

types. Students often take notes with paper-based notebooks, even

when provided with video annotation tools [20, 53]. Dodson et al.

found that undergraduates in flipped classrooms interact with an

heterogeneous information ecology, composed of learning materi-

als that span text, video, and audio [9], accessed through various

platforms, such as video players and learning management systems.

A challenge for teachers and learners is the limited interoperability

and linking within their information ecologies, resulting in what

Jones calls “information archipelagos” [27].

Hypertext often invokes digital environments, particularly the

Web; however, hypertext can exist in non-digital environments

[29]. For example, Marshall’s study of university students’ textbook

annotations suggests that annotations are conceptually hyperlinks

within and between content [29, 34]. When re-finding the source

of hypertextual notes, students often make use of navigational

cues [45, 55]. With physical information objects, such as textbooks,

these cues include properties of the artifact (e.g., its color and size),

paratext [17] (e.g., page numbers and headings), and relative posi-

tions of the information sought (e.g., “about half-way”). In e-books,

some contextual cues are reduced or lost completely, so text-search,

highlighting, scrolling, and annotations are commonly used to find

information [32, 39]. These types of contextual cues can be less

salient in videos.

In video, navigating can be difficult and time-consuming on ac-

count of fewer and less rich cues. Current video interfaces leverage

visual, auditory, textual and temporal information streams to fa-

cilitate navigation and re-finding of video information through

time-linked video-based annotation, transcripts, filmstrips, and ta-

ble of contents [28, 35, 58]. However, re-finding material in video

by other means, such as handwritten notes, is an underexplored

area of research.

Previous work has explored linking between media; in particular,

augmenting paper-based documents within digital information

[18]. For example, Yeh et al. created an application to augment

biologists’ paper-based fieldnotes with links to digital photographs

of butterflies [57]. Linking paper-based documents and video has

also been examined. The ChronoViz system, for example, uses a

special dot-marked paper and a camera to integrate paper notes into

the composite time-coded data set of video files [13]. Embedded

Media Markers can also be used as indicators, and are frequently

employed in terms of glyph codes [50], barcodes [40], or transparent

marks, signifying the availability of video associated with notes.

Temporal referencing appears to be a widespread approach in video

platforms for entertainment too. Yarmand et al. found YouTube

comments reference a variety of temporal aspects of video: from

single points, to intervals, to whole videos [56]. This paper builds

on the previous work by exploring how novel tools can support

interacting with video given students’ paper-based note-taking

practices.

JCDL has been a site of pioneering work on video-based interac-

tive information retrieval since the early 2000s [e.g., 6, 12, 16, 19,

23, 36]. The TRECVID [2] community has also made significant

contributions to this research area. Of particular importance to this

paper is semantic indexing, which requires methods for detecting

visual, auditory, or multi-modal concepts in videos that are assigned

as semantic descriptors of the video. For example, in VCenter [23]

Hsiao and Wang segment video into a series of frames from which

only the most representative frames are used for indexing. iVIEW

[31] is a system that supports full-content searching of multilingual

text and audio extracted from the video. Likewise, our approach

utilizes the visual, textual, and auditory data available from a video

collection to calculate a similarity score between a handwritten

note and a video.
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2.2 Handwritten Word Recognition

While much progress has been made applying optical character

recognition (OCR) to video recordings [1, 22, 44, 54], accurately

recognizing handwritten notes continues to be a challenge [42, 48].

A promising area of research on the recognition of handwriting

has leveraged stroke data, such as the direction and order letters

are drawn [7, 46]. This information is readily captured by mobile

phones and tablets, which support digital inking. However, many

students continue to use pen and paper for taking notes [20], mean-

ing stroke data is not always available.

Studies of handwriting word recognition have demonstrated

substantial improvements in recognition accuracy by employing

a combination of convolutional and recurrent neural networks

[5, 41, 51]. Deep-learning approaches require a large amount of

training data to discern the most important features for character

recognition. Collecting and annotating a sufficiently large dataset

of handwritten notes in different settings remains expensive and

laborious. To our knowledge, no such dataset is publicly available.

Therefore, in this work, we use off-the-shelf OCR engines leaving

machine learning-based recognition optimization for future work.

3 PHASE I: CHARACTERISTICS OF
HANDWRITTEN NOTES

In Phase I, we investigated the diversity of both note content and

their corresponding video references. The procedure involved iden-

tifying the distinct characteristics of students’ notes to inform imple-

menting our hand-writing recognition techniques. We specifically

targeted notes taken in technical courses, such as computer science

and engineering. We analyzed previously taken notes of instruc-

tional videos to identify links between notes and videos. Each link is

comprised of two entities: 1) the content of the notes and 2) the link

destination within the video, allowing us to compare the students’

notes to the correct point in the video. This resulted in a taxonomy

of handwritten expressions and linking types. We also developed a

dataset of mappings between each note to a video time-point. The

dataset was used in our Phase IV study.

3.1 Procedure

We recruited 10 undergraduate students — four from an electro-

magnetics course, two from a machine learning course, three from

a data analysis course, and one from a software engineering course.

We analyzed participants’ existing handwritten notes that were

recorded while they learned from instructional videos as part of

their coursework. Before the study, each participant confirmed they

had at least eight pages of previously captured handwritten notes.

Participants were asked to locate pages in their notebooks that

referenced content from an instructional video. Each instance of a

video-related notewas recorded to populate our dataset of notebook-

video mappings. To record the content of participants’ notebooks,

we used a flatbed scanner to capture high-quality images and main-

tain a consistent resolution, luminance, and color quality. The notes

collected were full-page copies of students’ notebooks. We pro-

vided each participant with a piece of paper to conceal any content

they were uncomfortable sharing. The notebooks were returned

after completing the data collection, which took approximately 45

minutes per participant.

Figure 2: Handwritten links collected during Phase I. From

top: a) text, b) drawing, c) formula, and d) hybrid note types

“Ground truthing” was a crucial step for validating our system

in the later stages of our project. We collected participant-labeled

ground truth observations along with the actual copies of video-

related notebook content. Once copies of all relevant pages were

taken, participants were asked to mark a rectangular box around

all the video-related part of notes. All the participants used a lap-

top provided by us to mark the boxes and chose either Paint or

Microsoft PowerPoint software for editing the annotations. Each

annotation included 1) the name of the video, 2) the timestamp

of the referenced video material where the note content can be

linked, and 3) a confidence interval, measured using the Remember,

Know, Guess paradigm [11], of their responses. Participants were

asked if they Remembered exactly where the note content occurs

in the video, Knew about the occurrence in the video but cannot

remember the exact point of time, or Guessed a video based on its

semantic relevance to the note content.

3.2 Collected Video Links

We recorded between five to 10 pages of notes per participant,

which contained a minimum of 10 to a maximum of 35 video links.

In total, 181 notes were collected and analyzed. We categorized the

notes into four types: 1) notes with textual content were called text,

2) notes with mathematical symbols were called formula, 3) notes

with drawings, such as circuits, were called drawing, and 4) notes

comprising a combination of the three typeswere called hybrid. This

was based on the examples described in the hierarchical annotation

of online handwritten documents [8, 24]. Examples of the four note
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types are presented in Figure 2. We determined the content types

of the notes, and found that 39.22% of the references (𝑛 = 71) were
written letters or words, 34.25% (𝑛 = 62) were formulas and 4.97%
(𝑛 = 9) were drawings. We also found 21.54% (𝑛 = 39) hybrid notes.
Hybrid content type consists of both textual and non-textual

components, which poses a challenge in selecting the appropriate

recognition technique. However, when analyzing hybrid notes,

we found that one content type often dominates the other(s). For

example: the proportion of a content type may be far greater than

the other type(s); the similarity score between a content type and

the video may be significantly greater than the other type(s); or

one content type may be emphasized (e.g., circled, highlighted,

or starred). This led us to reclassify hybrid content as either text,

formula, or drawing based on the dominant content type. In the end,

98 of all notes were tagged as text (54.14%), 65 as formula (35.91%),

and 18 as drawing (9.94%).

Students marked most note links with a confidence level of ‘Re-

member’. We identified two note links marked with ‘Know’ and

four with ‘Guess’. One participant tagged a part of the note page as

video-related content, but did not remember the video and marked

the confidence level as ‘Unsure’. An important aspect to note is that

each student took considerable time to scroll through the videos and

the video timeline to record the relevant timestamp. However, the

time taken to identify links did not indicate a general pattern. Also,

we did not see any consistency in the number of links recorded per

participant and their confidence level of recalling the related video

context as ‘Remember’, ‘Know’, or ‘Guess’.

Further, we analyzed verbatim overlap (VO), a measure of the

word-for-word overlap between the lecture content and the content

of the notes. VO is computed as the ratio of number of matching

chunk of notes to the total number of chunks in notes. A chunk may

represent each word of a text, each line of a formula, or a complete

drawing. The boxplot in Figure 3 visualizes the overall distribution

of the VO across text, formula, and drawing representations in the

watched video note content. The boxplot suggests that the inter

quartile range (IQRs) of all the three boxes are above 50% VO. This

inference implies that at least half of the note links identified in

each type, that is, text, formula, and figure, matched half or more

of the content chunk for chunk as found in the videos. We outline

some of the observations specific to each type below:

(1) In the case of texts and drawings, at least 25% of the note

samples showed a VO of less than 50%. In the case of text,

possible interpretations are that either students paraphrased

the content in the notes in their own words or, the matching

video timestamp as indicated in the ground truth did not

exactly match the context of the notes. The IQR for the text

type also exhibits a larger variance in the 50–100% window

of overlap compared to the other two types. This indicates

that with the text type, there is more paraphrasing when

compared to formula and drawings.

(2) The median is the lowest for the text type pointing to 75% VO

and is at 100% VO for the formula and drawings. Formulas,

specifically, manifest 100% VO in the case of at least half of

the formula-based notes. This implies that when learning

from videos, formulas are transferred literally to notes for

reviewing purposes.

Figure 3: A comparison of content overlap in the text, for-

mula, and drawing representations, respectively.

(3) Furthermore, for both text and drawing, there are cases when

there is no overlap at all, with a minimum of no VO. But, it

is extreme in the case of formula, indicating some amount

of obvious overlap for most cases.

3.3 Conceptualizing Video Timestamps

Investigating how students marked video links to their notes was

crucial in returning the accurate video timestamp as predicted. We

looked into the timestamp — i.e., the link destination — recorded as

the ground truth for each note link from the dataset, and found that

the timestamps are 1) not always where the note content exactly

occurs in the video and 2) not always the start of a section where

the topic of interest is discussed, for example, a student wanted

the returned video to play from the middle of a section where

the software code implementation is covered. The timestamp of

a retrieved video does not indicate whether a student is trying to

refind a whole video, an interval of similar content in the video, or a

specific point in the video. Thus, we conceptualize the timestamp to

be retrieved based on the temporal granularity in the video content.

Previous work has emphasized the importance of temporal con-

text within search results in video [4, 56]. For example, Yarmand et al.

[56] identified three distinctive temporal scales: 1) a point that ref-

erences a frame in a video, 2) an interval that references a span

of video frames, and 3) whole video. We applied these scales of

temporal granularity in our work.

4 PHASE II: DESIGN & IMPLEMENTATION

After finding that students make links to video content in their

notebooks using a variety of content forms (text, formulas, and

drawings), we set out to design and build a prototype application

that 1) recognizes these handwritten content types, 2) matches

these to a collection of video, and 3) presents the matching video(s)

to users.
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4.1 NoteLink: A Point and Shoot Application

Today, smartphones have great potential for delivering just-in-time

information [15, 26]. Considering students’ use of paper notebooks

for their coursework, we designed a mechanism for a mobile device

to serve as an interface between handwritten notes and the videos

that were watched when the notes were made. The user takes a

picture of their notes and the recognition system uses that image as

a query to find the corresponding video elements from whence the

notes came. The goal is to employ an interface that takes minimal

effort from a user to provide the desired input (i.e. point and shoot

at their handwritten notes) and delivers video results that convey

the information associated with the notes they took.

Figure 1 illustrates the use of NoteLink interface. When a user

opens the application, they are asked to either take a picture of

their notes or select an existing image from their device’s photo

library. For either option, the user can crop the image containing

the text content to delimit the part of the video-related note content.

The video(s) most similar to the image is then presented to the user.

The mobile application was built on Android platform using the

NativeScript plugins1 API for using the camera, the background-

http plugin for enabling HTTP calls, and the video player plugin

that uses the native video players to play remote content. At the

back end, the image input is sent to the Recognizer (Section 4.2)

and Matcher (Section 4.3) blocks to find the corresponding video

from a collection of videos.

4.2 Recognizer Block Implementation

We identified and compared available off-the-shelf OCR technolo-

gies to recognize each note type differently. A random note sample

from the data collection in Phase I was used to select an OCR API

that performs well with our requirements. We evaluated the OCR

APIs from PixLab,2 Google Cloud Vision,3 and Microsoft.4 The

Microsoft API worked best with rotated text characters, but it did

not reliably recognize the special characters, symbols and lines in

figures that did not contain text. To extract special symbols, such as

mathematical notations, from a given image, we used the Mathpix

OCR API.5 To read lines in pictorial representations, we used a two-

step recognition process. First, we extract feature-based key points

and descriptors from a scaled and slightly rotated image using the

Scale Invariant Feature Transform (SIFT) algorithm [30]. Second,

we compare the structural similarity, using Structural Similarity

(SSIM) index, between the note image and the filtered video slides

from the first step with SIFT. Finally, with the Recognizer block in

place, we implemented the Matcher block in order to find similar

videos from the collection.

4.3 Matcher Block Implementation

Figure 4a illustrates our approach for selecting videos that are

similar to the handwritten text and formula note types. We remove

stop words from the text identified by the OCR API, and look for

matches in the video transcripts. The region of interests (ROIs) for

1https://docs.nativescript.org/plugins/building-plugins
2https://pixlab.io/api
3https://cloud.google.com/vision/docs/reference/rest/
4https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/
concept-recognizing-text
5https://docs.mathpix.com/

Figure 4: Matching approaches for a) text and formulas and

b) drawings.

each video are computed to differentiate mathematical symbols

or formulas from text-heavy video frames. We then compare the

OCR-ed ROIs for each frame with the handwritten input data to

calculate the best matching ROI, which gives the best matching

video with the timestamp where the ROI occurs.

Drawings are processed differently than text and formulas. A

flowchart is provided in Figure 4b. Again, we match feature de-

scriptors from SIFT with input image descriptors. We compare

the SSIM of the note images with the list of ROIs from filtered

videos to produce the final matching video using the Fast Library

for Approximate Nearest Neighbors (FLANN) algorithm [38].

5 PHASE III: EVALUATION

Students’ opinion on how to employ a linking device like NoteLink

as an educational tool is vital, if the right technology is to be de-

signed, evaluated, and rolled out. We studied the acceptable tempo-

ral difference between the retrieved and the expected video along

with the inclusion of other video-related objects, to conveniently

establish the match. The objective of this phase involved three main

steps: 1) to learn about students’ preferred temporal granularity for

retrieved videos, 2) to assess their preference for and against video

metadata in the search results, and 3) to evaluate the usability and

usefulness of NoteLink for video-based learning.

5.1 Procedure

We conducted a lab-based usability study with 12 engineering stu-

dents who had previous experience learning with video in one or

more university courses. Half-hour appointments were scheduled

with each participant. We used NoteLink as a medium-fidelity pro-

totype to evaluate the design decisions made in Phases I and II.

Each session was audio recorded, which enabled us to focus on

participants’ verbal prompts throughout the study.

First, we asked participants about which video-based course(s)

they have taken, and, in particular, whether or not they have de-

veloped any video-related learning and/or note-taking practices, in
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order to help us explore more formative design opportunities. Sec-

ond, we asked participants to watch an instructional video and then

take a comprehension quiz. The purpose of this task was to help

participants recall note-taking when learning from videos and also

generate sufficient real-time notes to guide the subsequent tasks.

However, participants were requested to learn the video content so

that they can perform well in the quiz to facilitate more ecological

validity. Our approach follows Borlund’s work on using simulated

work tasks in lab studies [3] to obtain as realistic note-taking be-

havior as possible in a simulated setting. Participants chose one

video from three pre-selected instructional videos on engineering

topics. Each video was approximately five minutes. We encouraged

the participants to take notes using a sheet of paper. Third, we

asked participants to identify all notes that referred to content in

the video, following a procedure similar to Phase I. Fourth, we

gave participants a hands-on demonstration of NoteLink, explain-

ing how NoteLink retrieves videos using handwritten notes. Fifth,

participants reported their views for and against retrieving video at

three different temporal granularities and presenting search results

with different video metadata. They indicated their preferences

verbally and through Likert scale questions. Sixth, we asked par-

ticipants about the usability and usefulness of NoteLink. Again,

participants indicated their preferences verbally and through Likert

scale questions for effectiveness, efficiency and satisfaction.

5.1.1 Preference for Temporal Granularity. The first objective of

this phase was to examine whether or not students preferred one

of the temporal granularities for presenting the retrieved videos.

We showed participants three counterbalanced designs of display-

ing a timepoint at the point, interval, and whole video scale. The

designs were demonstrated relative to the notes participants’ took

in the video-learning task. For example, participants noted a video

timestamp for each of their notes as mm:ss, specifying the minute

and second in the video the note refers to. In the case of the point

temporal granularity, the video was retrieved at three timepoints,

mm:ss − 0:02, the timestamp, and mm:ss + 0:02 in the same frame

that pointed to the noted timestamp. In the case of interval, the

timestamp was shown as mm:ss − 0:30, mm:ss + 0:30, and for the

whole video, timestamp at the beginning or middle of the video. For

each temporal granularity, the participants shared their thoughts

with us aloud on what is an acceptable divergence from the time-

point. Additionally, participants indicated their preference on three

temporal scale based on the three questions using a Likert scale

ranging from 1 (strongly disagree) to 5 (strongly agree): 1) It is easy

to find the information I need from this timepoint; 2) The informa-

tion is useful in helping me complete the tasks and scenarios for

learning; and 3) I’m satisfied with the retrieved video timepoint.

5.1.2 Preference for VideoMetadata. The second objective of Phase

III was to better understand participants’ design expectations for

displaying the search results with video metadata. To display the

search results in a list, we used video metadata with textual and

non-textual attributes, following previous work [33]. We showed

participants three designs, with four types of video metadata: 1)

Title + Thumbnail, 2) Title + Thumbnail + Keywords, 3) Title +

Thumbnail + Keywords + Summary (see Figure 5). Participants

expressed their preference for the three designs aloud and also

Figure 5: An example search result, comprised of a Thumb-

nail (a), Title (b), Keywords (c), and Summary (d).

rated their agreement on same three statements listed for temporal

granularity.

5.1.3 Usability and Usefulness. Each participant also reported on

the usability of NoteLink in terms of efficiency, effectiveness and

satisfaction [4]. The three elements’ ratings were captured through

a set of Likert scale questions from 1 (strongly disagree) to 5 (strongly

agree). Each usability element’s items were phrased with two posi-

tive and one negative question to avoid bias.

5.2 Findings

5.2.1 Temporal Granularity. We compared participants’ prefer-

ences among the temporal granularities (i.e., point, interval, or

whole video) based on the data from the three Likert scale ques-

tions. Since the data collected was ordinal and failed to meet the

assumptions for parametric tests, we used the Friedman test. An

exact 𝑝-value was used to account for the small sample size (𝑛 = 12).
A post-hoc analysis was conducted using the Wilcoxon signed-rank

tests. A Bonferroni correction was applied, resulting in a signifi-

cance scale set at 𝛼 < 0.017.
Participants’ perceived ease of finding information from the

retrieved time point (𝜒2 (2) = 7.4, 𝑝 = 0.021) and perceived effec-
tiveness in completing tasks for learning were different across the

three temporal granularities (𝜒2 (2) = 6.897, 𝑝 = 0.029). However,
the post-hoc test did not locate significant differences between the

three scales. Participants’ satisfaction with the retrieved timepoint

was significantly different (𝜒2 (2) = 9.190, 𝑝 = 0.008). Additionally,
the post-hoc test manifested significant difference in the interval

and whole video temporal granularities (𝑧 = −2.240, 𝑝 = 0.011). Par-
ticipants felt higher satisfaction when the retrieved video timepoint

was in the interval when compared to a timepoint in the whole

video.

To learn more about participants’ preferences for and against

specific temporal granularities, we looked for explanatory quotes

in the verbal prompts. We coded participants’ comments at five

different levels of preference: Very good, Good, Neutral, Bad, or

Very bad, (see Figure 6). For example, P13 provided reviews on

each of the scales: whole video: “That can be really inconvenient,

because some videos are like two hours” was coded as Very bad;

interval: “It is somewhat helpful. I’ll probably be pretty satisfied”

was coded as Good; point: “I’ll just be pretty happy. Yeah, it gets

me to where I want to go” was coded as Very good. Comments were

coded as Neutral if a participant’s preference changed in context.
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Figure 6: Codedmapping of preference levels (i.e., very good,

good, neutral, bad, and very bad) to each scale of temporal

granularity (i.e., point, interval, and whole video)

For example, P1 reported that the length of the video influences

his timepoint preference: “If it’s a 15-minute video, yeah. I would be

okay with it, because it’s just 15 minutes. But, if it’s an hour or two

hours, then it becomes a slight bit of an inconvenience.” Following

the coded mapping Figure 6, the point scale had nine Very good,

one Good, one Neural, and one Bad; the interval scale had four Very

good and eight Good codes; and the whole video scale had two Very

good, three Good, one Neutral, five Bad, and one Very bad.

5.2.2 Video Metadata. To assess students’ preferences for and

against different search result designs, we used the Freidman and

Wilcoxon signed-rank tests. We compared the three presentation

styles for metadata: 1) Title + Thumbnail, 2) Title + Thumbnail +

Keywords, and 3) Title + Thumbnail + Keywords + Summary. Par-

ticipants’ perceived ease in finding information from the retrieved

timepoint (𝜒2 (2) = 2.889, 𝑝 = 0.240) and design expectation showed
no statistically significant differences (𝜒2 (2) = 2.8, 𝑝 = 0.270). How-
ever, perceived information clarity varied (𝜒2 (2) = 8.914, 𝑝 = 0.008).
A post-hoc analysis found a statistically significant reduction in the

clarity of information organization between the Summary and Key-

words presentation styles (𝑧 = −2.762, 𝑝 = 0.004).
We found that participants had no clear preference for any of

the metadata combinations, as there was no statistically significant

difference in responses in two of the three Likert scale questions.

However, verbal excerpts highlighted some differences between

the presentation styles. P3 preferred keywords: “I would prefer the

keywords most, because that one is short. For the abstract one, if

it’s one or two sentences, I think that will be better.” P10 wanted

a summary: “I think more the information more it will be easy for

me. So, okay, from here it is like more information so I can just read

through and recall if that’s the video I’m looking for.” Therefore, we

suggest that future systems provide users with a choice of how to

display search results.

The inclusion of video transcripts also seemed to be influenced

by the video content, compact video viewing in mobile applications.

P1 said, “I would want them for a few videos where the profs are

really fast. But if they are like slides, I don’t know. May be having

an option is good, like we have in youTube but not every time.” P6

said, “You know, just like I searched here, there’s little ability in a

smartphone to search like that.” An additional observation was that

all the participants except one (P3) preferred seeing a thumbnail

that showed the video content that matches the note content. For

example, P9 explained, “If that slide was in the thumbnail, that would

be the most optimal scenario.” However, P3 said that displaying key

frames may not always be useful: “I think for a video they always

have a thumbnail selected for that video in the system, and I remember

that thumbnail. If you change the thumbnail during the search, I’ll

probably get confused.”

We found that 11 of the 12 participants mentioned that they

would like to see a short ranked-list of matches. For example, P1

preferred having at most three search results: “Options are definitely

good, but how many options are there? I don’t want something like

Google, where it has pages of matches. Maybe three? Not more than

that.”

5.2.3 Usability and Usefulness. Final survey data on the usability

was analyzed. Participants thought that NoteLink was easy to use

(𝑀 = 4.42, 𝑆𝐷 = 0.49) and were able to become productive quickly
using NoteLink (𝑀 = 4.33, 𝑆𝐷 = 0.62). Overall, participants were
satisfied with our NoteLink (𝑀 = 4.33, 𝑆𝐷 = 0.47). When partici-
pants were asked about using NoteLink as an app on their mobile

phones, all the 12 participants reported that NoteLink would be

useful for learning with videos if it was a real application and could

be customized. P1 said, “If it had things I want, yes. Very useful.

Saves so much time, and maybe I’ll watch more videos then.” P2 said,

“Definitely, for videos that have to be bookmarked. This is very useful.”

The interviews suggest that NoteLinkwould not change students’

current note-taking practices. P13 said, “My note-taking wouldn’t

change but would be far more helpful.” The possibility of extending

the application of NoteLink to digital notes also played a role in

indicating no influence. For example, P4 said, “Because I write elec-

tronic notes I can imagine that could also be something that I can use

this snipping tool to take pictures and do that.” Overall the ability of

the system to retrieve video without requiring explicit links, such

as timecodes, means students can continue to use their current

note-taking style. P12 said, “I don’t think my note-taking process

would change as much. No, I don’t. I would still write my notes like

this. Because it works even now, if I scan this word.”

6 PHASE IV: ACCURACY

Based on the user feedback collected in Phase III, we redesigned

NoteLink to present the three highest-ranking results on each scan.

Then, we assessed the ability of the NoteLink to retrieve videos

related to the notebook data collected in Phase I. We used NoteLink

to test a total of 181 watched video notes and mapped the retrieved

timepoint to the point, interval or whole video scales. The evalua-

tion metric used was accuracy determined by the ratio of matched

notes to the total number of notes.

If any video in the list of three search results was the correct

video, it was marked as Match. Otherwise, it was marked as No

match. The timestamp of the retrieved videos were compared with

the ground truth timestamp. The video content in both the retrieved

timestamp and the expected timestamp were checked and marked

if they belonged to the same point or interval, or whole video. If the

Recognizer block encountered an error or returned no information,

it was marked as No data.We excluded 38 video links marked as No

data from the accuracy calculation. In these cases, the recognizer
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Table 1: The number of notes, number of matches, and accuracy for each content type (i.e., text, formula, and drawing) at the

three scales of temporal specificity (i.e., point, interval, and whole video).

Temporal Granularity

Note type Point Interval Whole video Overall

Count (𝑛) Count (𝑛) Count (𝑛) Count (𝑛) Notes (𝑛) Accuracy (%)

Text 36 27 15 78 80 97.5

Formula 5 10 10 25 44 56.8

Drawing 1 2 4 7 18 38.9

Total 42 39 29 110 142 77.5

failed to detect the content because the notes were illegible, due to

poor penmanship, or the notes provided insufficient information

to calculate similarity scores. Of the remaining 143 links, one link

was removed because it did not include a timestamp and video.

Therefore, the data from the Matcher block that was available for

comparison was 142 links.

About 77.5% of the total links (𝑛 = 142) returned video(s) that
matched the expected videos that participants reported as ground

truth. Table 1 presents the number of matches for the three content

types on the temporal granularity of point, interval and video. The

system matched textual content with an accuracy of 98%, formulas

with 57%, and drawings with 39%.

7 DISCUSSION

Our work’s contribution extends beyond developing a novel system

that retrieves videos related to handwritten notes. In Phase I, we

articulated the various content types in handwritten notes: text,

formula, drawing, and hybrid. Textual content accounted for about

half of all notes and video links collected, indicating its broader use

over the other types of content. In addition to the identified types

of notes, our investigation of VO also provides insights into each

content type. Figure 3 suggests that students tend to copy formulas

and figures as they appear in videos, but paraphrase textual infor-

mation in their notes. Overall, at least 75% of the notes in each type

showed some amount of VO, suggesting notes may be effective

queries for retrieving videos.

In Phase III, our results indicated that students prefer videos

retrieved with a timepoint at the interval scale. Displaying the

retrieved video with a timepoint anywhere in the related interval

provides a considerably large window of time difference between

the expected and the retrieved video timepoint. This is an important

finding as it aids future video retrieval systems to conceptualize

the timepoint difference in determining the right video context

associated with notes. A deeper investigation into the effects of

video metadata on video retrieval systems is necessary. Phase III

also revealed that students find the proposed linking approach

usable and useful for learning from videos.

We calculated the accuracy of NoteLink for different types of note

content and scales of temporal granularity in Phase IV. NoteLink

matched about 78% of the data to one of the temporal scales. Most

matches were at the point and interval temporal granularities,

which participants preferred to whole video. The participants’ pos-

itive attitude towards NoteLink suggests our approach has value

as a design specification for other systems for linking handwritten

notes and videos.

7.1 Limitations

In this paper, we only collected data from computer science and

engineering students. Future work could study other disciplines.

This may involve recognizing handwritten notes with content that

was not examined in this work (e.g., musical notation). In addition

to investigating how disciplinary differences affect note-taking

styles, lecture characteristics, such as the modality and the lecture

structure, is another critical factor that could be considered.

NoteLink performed well at matching textual note content to

videos as there has been extensive work in plain text matching and

high-quality APIs in word-spotting exists [49]. However, NoteLink

matched less than half of the formulas and drawings links. One

reason for this low accuracy could be the difficulty identifying non-

textual ROIs in the Matcher block. Similarly, advancements in fea-

ture matching are needed to find video correspondences for graph-

ical representations, as there can be more false-positive matches in

the case of free-form drawings.

We excluded 38 video notes marked as No-data in Phase IV, from

the accuracy calculation. The ability of the scanned query in fetch-

ing suitable videos may be improved, taking into account the types

of errors likely to occur when taking pictures of handwritten notes.

Additionally, the same video(s) can often be searched at multiple

points in a page(s) of notes that contain a mathematical derivation,

for example. The mobile app can implement these and many other

extensions of “paper/digital integration” without requiring changes

to the current writing processes giving such conventional paper

documents a whole new layer of digital functionality.

7.2 Design Implications

We demonstrated how a point and shoot mobile application can be

used to retrieve instructional videos that are similar to handwritten

notes. Future work could introduce a number of extensions to

improve retrieval accuracy. For example, a NoteLink-like system

could allow users to emphasize important parts of their notes to

support filtering information and better ranking of search result.

Systems could also allow users to append comments, notes, and

free-hand drawings to the images of their notes in order to improve
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the performance of the Recognizer andMatcher blocks. Future work

could also consider matching notes to videos and other learning

materials, allowing users to quickly search for information in place.

We believe that NoteLink-like systems can eventually create an

interactive platform for linking to and from multiple information

sources in a usable and useful mobile application.

8 CONCLUSION

This paper presents the requirements and evaluation of NoteLink, a

mobile application that uses handwritten note content as queries to

retrieve relevant videos. The content of notes were characterized as

either text, formula, drawing, or hybrid type. The timepoints videos

could be retrieved at had three granularities: point, interval or whole

video. Participants had an overall preference for returning videos

at the interval scale. NoteLink matched 77.5% of the links to one

of the temporal granularity, with 97.5% of text links matched to a

video at one of the three scales of temporal granularity. Overall, the

findings suggest that NoteLink-like tools are now possible using off-

the-shelf OCR technology and could introduce a new approach for

bidirectional linking between handwritten notes and instructional

videos.
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