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ABSTRACT 
Speech commenting systems have been shown to facilitate 
asynchronous online communication from educational 
discussion to writing feedback. However, the production of 
speech comments introduces several challenges to users, 
including overcoming self-consciousness and time 
consuming editing. In this paper, we introduce TypeTalker, 
a speech commenting interface that presents speech as a 
synthesized generic voice to reduce speaker self-
consciousness, while retaining the expressivity of the 
original speech with natural breaks and co-expressive 
gestures. TypeTalker streamlines speech editing through a 
simple textbox that respects temporal alignment across edits. 
A comparative evaluation shows that TypeTalker reduces 
speech anxiety during live-recording, and offers easier and 
more effective speech editing facilities than the previous 
state-of-the-art interface technique. A follow-up study on 
recipient perceptions of the produced comments suggests 
that while TypeTalker’s generic voice may be traded-off 
with a loss of personal touch, it can also enhance the clarity 
of speech by refining the original speech’s speed and accent. 
Author Keywords 
Speech comments; multi-modal comment; automatic speech 
recognition; transcription error; self-consciousness; 
transcript-based speech editing.  
ACM Classification Keywords 
H.5.1 Multimedia Information Systems: Audio input/output; 
H.5.2. User Interface: Voice I/O; H.5.2 User Interfaces: 
Interaction styles; H.5.3 Group and Organization Interfaces: 
Collaborative computing. 
INTRODUCTION 
Speech commenting has empowered a variety of multimedia 
collaboration systems for online discussion [29, 55], 
writing/design feedback [26, 27, 45, 52–54], and cooperative 
storytelling [34]. Often in these systems, recorded speech 

serves as the core modality around which other interactive 
expressions (e.g., gesture, inking, and video) are weaved 
together in sync. The interface that enables the production 
and editing of speech comments is therefore central to the 
success of a multimodal collaboration system. 

Recent studies report two major problems with existing 
speech commenting interfaces. First, speech commenters 
tend to be self-conscious during live-recording, distracted by 
speech disfluencies such as ‘um’ or ‘uh’, stutters, or long 
pauses [29, 39, 41, 55]. People may also feel disturbed when 
hearing their own voice [21, 55]. Second, while editing may 
be a step toward reducing self-consciousness, editing of 
spoken speech comments is taxing. Over the past decade, 
several transcription-based speech editing systems have 
shown that using a transcript as a proxy for audio offers 
effective semantic editing of spoken content [36, 41, 49]. 
However, these interfaces presumed an a priori audio 
transcription. To cope with the context of spontaneous 
speech commenting, these interfaces introduce separate 
modes of interaction: text-like audio copy and deletion, 
correcting live transcript from error-laden speech 
recognition, and re-recording for progressive revision [41, 
49]. Tracking and switching between these multiple modes 
can easily confuse users [35]. 

To address these issues, we built TypeTalker, a speech 
synthesis-based multi-modal commenting system. In 
TypeTalker, the user’s voice entry is transcribed to later be 
synthesized into a computationally refined generic voice. As 
we show, the synthesized voice reduces speaker anxiety, 
since the audio in the standardized voice lacks the linguistic 
glitches of the original speech, and doesn’t cause the 
affective disturbance of hearing one’s own voice [21, 29, 55]. 
In addition, we show that this approach reduces editing time 
by enabling an error-laden text transcription to act as a proxy 
for simultaneous editing of audio and any underlying 
metadata. This method allows temporal metadata, in this case 
gestures on a document, to be captured and replayed in sync 
with a speech comment, even after the comment is edited. 

The functional benefit of TypeTalker’s synthesis-based 
approach is its streamlined workflow for revising speech 
(Figure 1) in comparison with that of traditional 
transcription-based speech editing systems (Figure 2). While 
the captions (text) in a traditional interface only work as 
placeholders for utterances, TypeTalker guarantees a match 
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between audio and text because the voice is synthesized from 
the text. This approach enables simpler and more efficient 
revision, as caption correction and content editing are unified 
through single-mode keyboard editing over the transcribed 
text. For example, TypeTalker supports generative editing 
operations (e.g., insertion of new words or syllables) via 
simple text editing, while the traditional approach requires 
recording (or re-recording) additional voice content. 

To evaluate the efficacy of TypeTalker’s design, we 
conducted two comparative evaluations against a state-of-
the-art peer system built under the traditional approach [41]. 
The primary study asked participants to produce voice 
comments in each interface, and found that TypeTalker’s use 
of a synthesized voice significantly reduces public/social 
self-consciousness. Comment producers also unanimously 
reported that TypeTalker’s streamlined workflow enabled 
more lightweight and efficient speech editing compared to 
the previous technique. A follow-up study let participants 
listen to two types of voice comments generated from the 
primary evaluation. While some participants reported that 
they missed the personal touch of human voice when 
listening to TypeTalker’s machine-generated voice, some 
also felt the machine was easier to understand compared to 
the human condition, thanks to its clear articulation and 
steady pace. Together these two studies highlight the 
potential and possible trade-offs of our approach in a 
constructive and collaborative use context. 
RELATED WORK 
Our study was inspired by previous work on speech-centered 
multi-modal collaboration systems and on psychological 
analysis of user behavior when using such systems. 

In the field of computer supported cooperative work 
(CSCW), speech has been used as a central mode of 
communication in many different multimedia collaboration 
systems for supporting discussion [29, 55], feedback [26, 27, 
45, 52–54], and storytelling [34]. Jonathan Grudin pioneered 
studies on issues surrounding voice application in a 
cooperative setting [17]. His study was first to raise 

awareness about the speech consumption problem: that 
browsing often takes longer than speaking. The subsequent 
studies of the field solved that problem by introducing 
interactive systems using binary acoustic structuring [20] 
and waveform indexing [55]. In this study, we aim to tackle 
the production side of problem, which has been frequently 
documented [19, 29, 39, 41, 55] but not yet resolved. 

Use of rich media allows communicators to express 
equivocal and nuanced ideas more effectively by clarifying 
ambiguities [13]. For instance, voice comments have proven 
more effective than textual comments for writing feedback 
as they convey nuances and emotions of the commentator 
[10, 29, 55]. In addition to speech, researchers have 
combined various types of visual cues to enrich spoken 
comments. Ink mark-ups act as a visual mnemonic or future 
retrieval for indexing [26, 52, 53]. Gesture provides a deictic 
cue that delivers indexical information that is co-expressive 
to speech [45, 54]. Moreover, video can leverage embodied 
nuances such as facial expressions and upper-body gestures 
to enhance communication [14, 25]. Our interface also 
benefits from co-expressive speech + gesture commenting, 
but it goes beyond previous work by resolving the problems 
of speech recording in terms of user psychology and ease of 
revision. 

Speech comment editing is a well-explored topic in HCI. 
Through the years, different designs to speech editing 
interfaces have been proposed and evolved. In professional 
audio/video production software, low-level audio editing 
was made possible through waveform representation over a 
timeline [2–4, 6]. Since the fine-grained timeline in the 
waveform interface introduced an extra burden on novice 
users, especially in the context of speech editing, researchers 
structured audio into a higher-level representation by 

 
Figure 1. TypeTalker workflow. A user can finish different 
types of editing job in one-pass:  correcting the ASR error 

(‘fox’ mistranscribed as ‘box’), and changing a spoken word 
content (from ‘quick’ to ‘cute’). 

 
Figure 2. The traditional transcription-based speech editing 
workflow requires a user to switch between three different 
input modes: correcting captions (‘box’ to ‘fox’), editing 

contents (deleting ‘quick’), and re-recording (adding ‘cute’). 



analyzing its acoustic structure, such as speech/non-speech 
chunks, phrases, or sentences, for browsing [5, 44] or editing 
[1, 20]. A more recent approach employs time-synchronized 
captions from automatic speech recognition to augment the 
edited audio chunk with semantic meaning. This approach 
enables visual skimming and browsing of audio without 
requiring users to spend time tediously re-listening [9, 38, 47, 
51]. Moreover, snapping the editing prompt to a word’s 
boundary afforded text-like audio/video editing [7, 36, 41, 
49, 54]. Contrary to the previous transcription-based systems 
where audio is loosely coupled with the transcription, our 
system’s synthesized audio is guaranteed to say exactly what 
is written and edited as text. This approach not only enables 
faster speech revision, but also supports generative editing 
operations, such as insertion or rephrasing of words that used 
to require cumbersome re-recording, through keyboard input. 

Captions from ASR have transcription errors by nature. On 
one hand, words from the error-laden transcript have been 
shown to act as semantic cues for extracting key points or as 
navigational cues for browsing [51, 54]. On the other hand, 
recognition errors hurt listener comprehension [43] 
especially for non-native speakers [33]. When the 
recognition rate is very low, listener comprehension might 
be as bad as [47] or even worse than [31] that with no 
transcription at all (e.g., reading homophone transcription 
errors can induce confusion by misleading listening 
comprehension [54]). While all of these studies suggest the 
impact of transcription errors on recipient psychology, a 
recent report from Sivaraman et al. suggests that the pressure 
to correct transcription errors may also increase the workload 
of speech producers [41]. 

Previous research on speech interfaces found design factors 
that affect speaker psychology. While ordinary voice 
conversation is ephemeral, if speech interfaces give people a 
sense of being recorded, they tend to speak differently [11]. 
Even a physical awareness about the recording device (e.g. 
awareness about a wired lapel mic) can impact speaker 
response, reducing creativity and disclosure and introducing 
speech disfluencies [48]. Recent studies on asynchronous 
speech commenting systems suggest several factors that 

might increase cognitive load for speech commenting: lack 
of lightweight editing features, concerns about one’s speech 
disfluencies, and affective disturbance of hearing one’s own 
voice [21, 29, 55]. Our qualitative results suggest how the 
use of voice anonymization and ease of revision can reduce 
speaker anxiety in speech editing interfaces. 
DESIGNING TYPETALKER 
The main design contribution of TypeTalker is a novel 
interface for editing speech + gesture comments as text in a 
textbox. To start, we provide the reader with a brief summary 
of the RichReview system on which our TypeTalker design 
and implementation is based.  
Building TypeTalker Based on RichReview  
The TypeTalker editing interface was integrated and 
evaluated in the context of the existing multi-modal 
collaborative annotation system RichReview by Yoon et al. 
[54, 55] (Figure 3). RichReview enables speech + gesture 
commenting on PDF documents. To record a comment with 
RichReview, the user highlights a line of the document and 
‘tears’ a space beneath The system offers time-synchronized 
recording of mouse gestures that can effectively augment 
verbal description of speech with a deictic visual aid of an 
animated blob (e.g., Saying “This section needs a revision.” 
while dragging over text, Figure 3. (b)). These gestures are 
time-aligned with the recorded speech and replayed in sync 
with it. Users can replay their comment by pressing the 
‘Play’ icon and navigate during replay by either (1) clicking 
on passages of text or (2) clicking a ghosted remnant of an 
associated gesture. 
TypeTalker Design Rationale 
We set the following three objectives to make the design 
decisions which embody the needs and challenges learned 
from prior work. 

Reducing self-consciousness  A sense of being recorded can 
introduce anxieties in speech production. Two major sources 
of anxiety are the speaker’s concerns about the way one’s 
voice will sound to the recipients (e.g. ‘um’s), and the 
affective disturbance of hearing one’s own voice. By using 
an automatically generated text-to-speech voice instead of 
the speaker’s own voice, we let the user be less self-
conscious about recording their voice. 

Single-mode speech editing  Previous editing systems [36, 
50, 54] maintain a loose correspondence between text token 
and source audio snippets. This setting (1) requires 
producers to do “double-work” for editing audio and 

 
Figure 3. TypeTalker inside the RichReview system [54] is 

designed to record, edit, and replay speech + gesture 
comments. 

 
Figure 4. Editing process for the spoken comment 



correcting transcription errors, (2) introduces confusing 
interaction modes between audio editing and caption editing, 
and (3) slows down frequent and small edits (e.g., adding the 
past-tense ending, “ed”), since new words can only be 
inserted by speaking. In TypeTalker, synthesized audio is 
generated based on text tokens as the user edits them. This 
tight coupling of edited audio to text tokens enables a unified 
single-mode revision process for audio (Figure 1). 
Retaining expressivity of the original speech + gesture 
recording  A pure synthesized voice generated based only on 
the transcribed text misses the richness of multi-modal 
inputs, such as pauses in the user’s speech or co-expressive 
gestures. In TypeTalker, the synthesized speech retains 
expressivity of the source speech, such as natural pauses. 
Also, time-synchronized gestures recorded with the original 
speech are transferred to the corresponding words of the 
synthesized voice. 
Editing Interface 
TypeTalker allows editing of a speech + gesture comment 
through standard keyboard-based text editing. In this section, 
we illustrate a typical user workflow. 

Imagine that a user wants to comment on a diagram. In our 
example, she begins a new comment beneath the prompt. A 
tooltip waveform and icon blink to remind the user that they 
are in recording mode (Figure 3. (a)). While recording, she 
can refer to areas of the diagram by making deictic gestures 
(see (b)). Inside the text box, a red marker pulses at the place 
of insertion, reminding the user that they are in recording 
mode (c).  

Once the user stops recording, the system is ready to support 
editing (Figure 4). It first swaps the blinking marker with the 
final ASR transcription results (a). In TypeTalker, each word 
of the ASR transcript is linked to time-stamped metadata 
(such as a gestures). To enable text-like single-mode editing, 
the system presents the transcription as a normal text inside 
the textbox by managing this audio correspondence data in 
the background, hidden to the user. 

At this point, the user can review their comment and edit it 
through standard keyboard-based text editing. It is important 
to note that one can both correct transcription errors and 
insert new content in the same textbox with a seamless and 
consistent keyboard interaction. For instance, in (b), the user 
fixed the mis-transcribed ‘hydrogen’ to ‘erosion’ as well as 
typed-in “along the cliffside”). Editing can also include 
deletion of portions of speech, punctuation revision, and 
pause manipulation. When the user wants to add new 
contents with gesture or speech pauses, they place their 
cursor at the end of the text and press the ‘Enter’ key to begin 
a new recording (c). The same revision process follows. 

Upon pressing the ‘Play’ icon for playback, the system 
narrates the newly edited text, together with an animated 
visualization of gesture and pen input properly synchronized. 
This multi-modal replay gives a vivid multi-modal rendering 
that supersedes just reading the transcribed text. 

One of our goals was to retain some of the expressive quality 
of the user's original voice. Of particular concern was the fact 
that speech-to-text lacks the user’s natural breaks in speech. 
We alleviated these concerns by transferring pause from the 
original speech to the synthetic voice. To help users control 
which pause they would like to keep, the in-line markers ‘♦’ 
denote a short pauses, while we append a period ‘.’ for longer 
pauses. We initially also transferred select pitch contours 
per-word according to their root-mean-squared-error with 
the synthesized word's contour; however, we were not able 
to find the right balance between the articulated prosody of 
speech-to-text voice and the user's natural prosody. The 
system used in our evaluation had the pause transfer feature 
only, but more than half of the participants reported that the 
retained pause timing could effectively convey the majority 
of expressive richness in the original speech even without 
having prosody transfer. 
ALGORITHMIC METHODS 
In this section, we describe our implementation methods in 
roughly chronological order from recording to playback.  
Real-time Transcription 
For transcription, our system streams microphone data to the 
IBM Watson service [22], which we also use for synthesis. 
For each recognized word we obtain timestamp data. As the 
system revises its matches, we store the current best match, 
and permanently append the final matches at the current 
insertion point when the user stops recording. Any special 
markers received from Watson are ignored. 

Our early prototype opted to show the live transcription 
results in the textbox while recording; however, we observed 
in the first pilot study that on-the-fly transcription errors 
distracted users from their commenting job, because they 
became concerned with spotting and fixing errors as the 
transcript updated. Therefore, we opted to minimize 
distraction by presenting a simple blinking marker only, 
much like a text-editing caret.  
Transcript Post-processing 
The ASR transcript is bereft of textual formatting like 
capitalization and punctuation. Since formatted text reduces 
workload (users don’t have to manually punctuate) and eases 
comprehension of the text, we implemented pause-length-
based heuristics for automatic punctuation and capitalization 
of the transcript.  

Inline pause markers retain some of the original richness of 
the user’s voice when synthesizing voice from the transcript. 
Although our system cannot detect grammatical commas, we 
can transfer their audible effect (a break in the sentence) in a 
homogenized fashion with other punctuation, such as 
hyphens. We chose to show pauses to users rather than hiding 
them to allow users to remove unnatural breaks in their 
speech, for instance due to hesitation. For both interfaces in 
our evaluation, we analyzed the final match for pauses by 
marking gaps between timestamps. We inserted a pause 
marker between words of the transcript if the gap is greater 



than 30 msec. For TypeTalker, pause markers are a ‘♦’ 
symbol (for gaps less than 1 sec) or a period (for gaps 1 sec 
or greater). Our use of pause markers instead of commas is 
similar to the pause tags found in [36]. We automatically 
capitalize a word following a period. 

During voice insertion, we also capitalized the first word if 
the previous word ended in a period. This minimal 
punctuation was introduced to shorten user editing time and 
make voice insertion fluid and intuitive. 
Realignment and Synthesis 
Our system incorporates gestures as extra-modal temporal 
metadata linked to speech recordings. Since the user can 
freely edit text, any edits to the transcript must be reflected 
in the playback of these gestures. For instance, if the user 
deletes a sentence, any temporal metadata recorded “inside” 
that sentence should also disappear. We opted to realign 
gestures by comparing the edited text to successive versions 
of previous text, starting with the original transcript.  

Figure 6 illustrates our approach through a simple example. 
In (a), a user records their voice and gestures while speaking 
the word "fox." The machine transcribes "fox" erroneously 
as "box" (b). When a new transcript is inserted from voice 
recording, the text's current state is saved as a sequence of 
tokens. A token links a transcribed word (as text) to the 
segment of recorded audio in which it appeared (as 
timestamp info). We call this initial token sequence the 
"base" tokens. Pauses both before and after a base token are 
stored so that the length of each pause marker on playback 
can be deduced by the tokens nearest to it. Gesture 
timestamps and other metadata is stored separately. 

Next, the user corrects the mis-transcription using her 
keyboard. When she presses Play (c) the comment is 
compiled. Compilation comprises three steps:  

(1) stripping both the base text and the edited text of any 
punctuation and pause markers, as well as making the 
text lowercase 

(2) comparing the two texts with a string edit difference 
algorithm [32] to compute a sequence of operations on 

the base text.  The four operations are: insert (insert a 
token before the current token at the index position), 
delete (remove the token at the index position), replace 
(change the token’s word at the index position), and 
unchanged (do nothing). The replace operation also 
stores the edited word. The difference algorithm infers 
which words are 'inserted' or 'deleted.' The replace 
operation is a concatenation of back-to-back 'delete' 
and 'insert' operations (d).  

(3) applying these operations to the base tokens. For a 
delete operation, the token is deleted. For an insert 
operation, a new token is inserted at that point in the 
sequence. This token has no timestamp information, as 
it was generated through typing. For a replace 
operation, the word stored in the base token is replaced 
by the edited word. The token's timestamp information 
remains unaffected. In addition, pause information for 
output tokens is computed by comparing the remaining 
pause markers in the edited text with the base tokens. 

The output is a new "edited" token sequence. For playback, 
these edited tokens are flattened into a transcript and 
converted to Speech Synthesis Markup Language with 
<break> tags for pauses. TypeTalker also dampens user 
pauses along a sigmoid curve that approaches our 
synthesizer's length for pauses after a period (~450ms). 
Mapping Gestures to the Edited Tokens 
In TypeTalker, gestures recorded during speech must be 
automatically remapped when the user edits the text. Since 
the synthesized voice is spoken at a different rate than the 
user’s, gestures made during recording also need to be 
stretched. Both features rely upon situating words in the 
synthesized audio. Since timestamp information was not 
available for the speech-to-text output, we ran the audio and 
edited transcript through HTK forced alignment [8] to obtain 
timestamps. From both the edited tokens and the speech-to-
text timestamps, we then computed a sequence of 
“synthesized” tokens. Gestures could then be recomputed 
from both the edited tokens and the synthesized tokens 
through a split-map-reassemble process similar to 
Golovchinsky and Denoue’s visual segmentation scheme 
[16]. Our method respects the time correspondence of speech 
tokens and gesture strokes. First, in the splitting phase, 
gesture strokes in the original recording (Figure 5. (a)) are 
chopped into pieces of strokes (see (b)), where temporal 
information corresponds with co-occurring tokens in the 
edited sequence. The chopped pieces are then mapped to the 

 
Figure 6. (a) The user speaks and gestures. (b) The user 
finishes recording, and ASR results are inserted into the 
textbox. (c) The user changes “box” to “fox.” (d) The edit 

detected as a replace operation. (e) The edits are compiled into 
a final version. Notice that the gesture remains.  

 
Figure 5. The split-map-reassemble process for gesture 

transfer. 



corresponding speech tokens in the synthesized sequence (c). 
Finally, we combine the reassembled gesture-piece sequence 
with potentially clipped pieces by lumping consecutive runs 
of gesture pieces into a single continuous gesture stroke (d) 
that respects the new beginning and ending time-stamps. 
Mapping across Multiple Edits 
Since it is unreasonable to expect users to make their 
comment in a single pass, our system supports insertion of 
speech + gesture inside existing comments. This raises the 
technical question of where the new recording's tokens 
should be inserted into the previous base sequence, since the 
user may have made several textual edits, maybe even 
deleting entire sentences. In our system, when the user 
inserts a new voice comment in-line, we set the base tokens 
to be the previous edited tokens, and inject the recorded 
tokens at the insertion point. In other words, the previous 
edits to the text are "committed" to be the reference for future 
edits. We found this approach effective at maintaining 
gestures across multiple edits, even when the user strays far 
from their original comment.  
Performance across Multiple Edits 
Rather than sending the entire comment to speech-to-text on 
each replay, only sufficiently changed sequences of text are 
synthesized. The previous edited token sequence is chunked 
by punctuation and pause duration, and each section is 
compared to the new edited sequence. The synthesis result(s) 
are then stitched together with any preexisting sections of 
audio for the final comment. 
Implementation 
TypeTalker was implemented in the browser with Javascript, 
and utilized a back-end Python server for interfacing with 
HTK and other off-the-shelf audio analysis tools. In our 
prototype, WAV files were sent locally to the server for 
analysis. Since our synthesizer returned audio the quickest 
when the ogg-opus codec was specified, we also wrote a 
client-side decoder to convert ogg-opus to standard WAV 
format to improve synthesis speed. 
PRODUCER-SIDE EVALUATION 
Our primary evaluation aimed to study whether our new 
design approach of TypeTalker could reduce producer 
speech anxiety and promote faster speech editing by 
comparing it to the SimpleSpeech system [36], a design 
based on the traditional approach. To draw out a quantitative 
comparison as well as qualitative implications for the future 
design improvements, we employed quantitative-major 
embedded design mixed methods where a task-driven lab 
study embeds exploratory qualitative inquiries such as 
observation notes and interviews [12].  
Peer System 
Our interface was evaluated against a prior speech editing 
interface, SimpleSpeech [41], that adopts the previous 
approach. SimpleSpeech presents speech audio as a series of 
word tokens that affords text-like editing operations, 
including deletion, copy, cut, and paste. Transcription 
correction can be done in a small pop-up box that appears 

when the user first selects the target word token and then 
types substitute texts. As shown in Figure 2, it also has 
confidence shading [47], instant word replay, and a feature 
for running through the words by token. Other than those 
core features all the interactions remain consistent across the 
two interfaces. 
Sampling 
For this formative evaluation process, we recruited 15 young 
(18-22 years old, 14 female) undergraduate students at a US 
university. We selectively sampled participants who speak 
native or fluent English (12 native speakers), since the 
speech recognition system was optimized for standard 
American English pronunciations and accents. Our 
participants had different majors spanning across art, 
science, and the humanities.  
Data Collection 
To set up a concrete and substantive use context, we put 
participants in the shoes of a student who takes part in the 
discussion activities of online coursework at a University. 
More specifically, we gave participants a series of 
commenting tasks that asked them to record their speech and 
gesture on given diagrams. The diagrams depict middle-
school level academic topics, such as the ‘bottle recycle 
process’ or the ‘coastal erosion process’ shown in Figure 3. 
We only selected diagrams with very easy concepts and 
minimal text, because we wanted the participants to focus on 
our interface rather than spending too much effort thinking 
about what to say. Each participant performed 3 sessions of 
tasks; in each, they created a paragraph-long speech 
comment. These tasks imposed proper amounts of effort on 
the participant to the extent that they had to leverage the full 
functionalities of the system in a reasonable time range (total 
3~6 min) for this 1.5 hour-long study. 

After the sessions for each condition, participants answered 
a set of surveys for rating perceived public/private speech 
anxiety and overall task loads. The anxiety measure was 
adopted from the Scheier & Carver’s Self-Consciousness 
Scale (SCS-R) by selectively contextualizing four questions 
about public speech to the asynchronous speech recording 
use case [37]. The workloads were measured as the weighted 
NASA-TLX scale [18]. Participant activities were also 
logged to measure the number of different recording and 
editing behaviors as well as the transcription results. 

To collect the qualitative data, the investigator sat behind the 
participants’ workbench, observed her task practices, and 
took notes of any notable incidents. Implications from the 
observations were referred back from the post-task interview 
for two purposes. First, we asked ‘how’ and ‘why’ questions 
to the participants to better understand the rationale behind 
their behaviors [28]. Second, we did member checking [30] 
to validate our on-the-fly interpretation of participant 
behavior. 

The task sessions were followed by a ~15 min-long semi-
structured in-depth interview. The interview was structured 



in a top-down manner where the general implications were 
asked first, and more specific leading questions followed. 
The topic of the questions covered usability & performance, 
learnability, speech anxiety, editing behaviors, strategies for 
managing speech recognition errors, comparison of speech 
commenting to face-to-face speech or textual commenting, 
etc. Also, the interviewer sometimes brought up odd 
behaviors observed in the interviewee’s task sessions to 
better understand what happened and how they felt about it. 
Entire interview sessions were audio-recorded for potential 
future analysis. 
Data Analysis 
We performed the paired t-test for the quantitative data, such 
as the self-consciousness or workload indices. For generating 
quantitative implications, we conducted theoretical sampling 
[15] by comparatively analyzing data from the two different 
UIs. After collecting and transcribing interview data into 
texts, the lead investigator performed an open-coding 
followed by a flat-coding to draw out theoretical categories 
of the implications in consultation with the coauthors. To 
maximize the validity of our findings, we triangulated 
different types of data, and consistently looked for negative 
cases to falsify potentially defective evidence [30]. 
RESULTS 
The participants generated a total of 90 comments (15 × 2 × 
3) for the tasks. On average, the comments were 20.3 sec 
long (SD = 16.1) with 39.6 words (SD = 36.2) for 
TypeTalker, and 18.0 sec long (SD = 14.3) with 36.9 words 
(SD = 35.4) for SimpleSpeech. They also made a couple of 
gesture strokes for each session (M = 1.50, SD = 2.08). None 
of these basic measures were significantly different between 
the two conditions. 

Average recognition accuracy of the source speech measured 
as word error rate (WER) was .19 (SD = .10) in the 
TypeTalker condition, and .16 (SD = .09) for the 
SimpleSpeech condition which are slightly higher than 
IBM’s official data  of .104 [42] possibly due to the 
participants’ speech disfluencies. The response speed of the 
transcription engine was near real-time as we live-streamed 
the audio to the Watson’s cloud server in the 16-bit 22.05 
kHz PCM format. 
Reduced Self-consciousness 
The participants perceived significantly less public/social 
self-consciousness during speech when using TypeTalker, 
thanks to the synthesized generic voice imposed less 
concerns about public performance than the peer system that 
records audio as is (see Figure 7, left). In our SCS-R 
measure, ratings for public/social-anxiety were significantly 
lower with TypeTalker (M = 2.57, SD = 1.13) than 
SimpleSpeech (M = 3.06, SD = 1.05, p = .019, paired t-test, 
Cohen’s d = .46). 

From the qualitative responses, we found that a total 12 of 15 
participants reported lowered self-consciousness. First, 7 
participants (P1, 2, 4, 8, 10, 13, and 14) reported that the 

TypeTalker interface alleviated their concerns about the way 
their speech will sound to the recipient, because the 
machine’s voice doesn’t retain small speech disfluences 
including ‘uh’, ‘um’, stutters, hesitations, or long pauses. In 
contrast, voice recordings in SimpleSpeech made them 
“nervous that I would just keep going like ‘um, um...’ in the 
middle of my statements. It just seems like there was a lot 
more that could go wrong that way. (P13)”. There was no 
participant in our sample who felt more anxiety in the 
TypeTalker condition. 

Second, 7 participants (P2, 4, 5, 6, 7, 11, and 13) liked that 
they don’t have to listen to their own voice, which often 
causes affective disturbance [21]. To quote P13, “I 
personally hate listening to my own voice on recordings 
[laugh]. It’s weird to me. It’s a little off-putting (P13).” This 
disturbance remained salient during the revision phase, as 
P11 stated “I don’t like hearing my own voice. So when I try 
to replay them, I almost muted the computer”. The other 8 
participants didn’t mention the affective disturbance from 
hearing their own voice. 

Finally, 6 participants (P4, 5, 8, 9, 13, and 14) were less 
concerned about making mistakes while using TypeTalker 
because they “knew that it was easier to correct those 
mistakes (F5)” and “required much less work (F8)” using the 
keyboard interface afterwards. 
Effective Revision 
The participants were unanimous that TypeTalker’s type-
written editing was not only easier to learn, but also more 
lightweight and effective for editing. The participants liked 
familiarity of the normal text editing interface, single-mode, 
and no need for re-recording. This quote summarizes the 
implications well: 

“TypeTalker was easier, just because it was very 
similar to like normal typing, I could just go in 
and fix things, and you know I could change 
words, I could change sentences if I wanted to 
without having to worry about it, whereas with SS, 
if I wanted it to change or rephrase something, I 
have to go in and re-speak it, and it usually comes 
out sounding different than like louder, like just 
awkward (P14).” 

 
Figure 7. Quantitative results from TypeTalker (TT) and 
SimpleSpeech (SS) conditions (95% confidence intervals). 
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Reduced confusion from unified editing mode 
A total 9 of 15 participants said that TypeTalker’s single-
mode editing was straightforward to learn and use, and more 
efficient. Although most of them felt that SimpleSpeech’s 
interface was easy enough to get accustomed to in a 
reasonable learning time, they oftentimes felt the interface 
“confusing (P6),” “frustrating (P8),” or “not knowing what 
to press (P5)”. They felt that there were too many options, 
and as P12 stated, “when to say, when to type, when to press 
enter was different than expected”. This suggests that 
TypeTalker’s design decision to unify audio and text editing 
significantly improves editing efficacy. For some users, 
audio-text division of SimpleSpeech was not only about the 
mode confusion issue during editing. Sometimes, when users 
accidentally deleted an audio token, they tried to recover it 
by typing that transcription to the nearest token, losing audio 
although showing the correct transcript: “I often deleted my 
voice recording closing a glitch. That was the hassle (P10).” 

Efficient content editing 
Editing spoken content was more efficient in TypeTalker, 
because, unlike in SimpleSpeech, it didn’t require 
participants to re-record parts (11 of the 15 participants). 
When asked about how hard they worked for editing content 
other than transcription errors, the survey response showed a 
trend that they edited more content in TypeTalker than 
SimpleSpeech (p = .082, Cohen’s d = .47). More pauses were 
edited during the revision process as well. In the original 
speech data, the number of pauses were not significantly 
different, but the end results had significantly less pauses in 
TypeTalker condition. This is possible because of a trend 
where more pauses were deleted during editing in the 
TypeTalker system (p = .093, Cohen’s d = .33). 

To insert new audio contents in SimpleSpeech, users had to 
re-record the part of speech, since there is no way to create 
new audio from the edited text. For our participants, this re-
recording worked as the major drawback for editing content 
(11 of 15 participants). This implication is reflected in log 
data that shows that users rarely re-recorded in the middle of 
a SimpleSpeech stream (M = .84, SD = 1.19). Also, when 
they were given the typing capability to add contents in 
TypeTalker, the use of the insertion feature became 
significantly rarer (M = .37, SD = 1.12, p = .041, Cohen’s d 
= .40), because they preferred to just type to insert voice 
rather than recording that part again. They preferred not to 
re-record speech not only because it was cumbersome, but 
also because the inserted voice sounds awkward and felt 
“forced in (P5)”, “misplaced (P8)”, “louder (P14)”, “off-flow 
(P14)”, or “choppy (P15)”. 
Implications on correcting transcription errors 
Even though there seems to be more pressure to correct 
transcription errors in TypeTalker than SimpleSpeech 
“because the program will specifically read what was 
transcribed (P8)”, such pressure was evened out by the three 
factors beneficial to the TypeTalker condition. First, editing 
by keyboard input was easier in TypeTalker as stated above. 
Second, SimpleSpeech users also felt pressure to fix mis-

transcriptions, so that the recipient of the messages wouldn’t 
be confused by the wrong text (13 of the 15 participants). 
Finally, editing transcriptions in SimpleSpeech forced the 
participants to re-listen to their audio, because they had to 
match the text to the voice. There were significantly more 
replays in SimpleSpeech than TypeTalker (p < .001, Cohen’s 
d = 1.46). Re-listening was upsetting for the participant, not 
only because it was cumbersome (P2, 7, 8, and 14), but 
because re-listening during editing (P11) also caused the 
self-disturbance problem of hearing one’s own voice.  

Nonetheless, some other users liked that they could re-listen 
to their voice in SimpleSpeech, because it helped remind 
them of the content of their original narration (F9 and 11). 
Although the TypeTalker system didn’t have the re-listening 
feature for replaying the original voice, one might improve 
the transcription correction process by including an in-situ 
replay feature as a mnemonic device for the system in the 
future (e.g., replay the snippet of original speech, when 
selecting words for editing). 
Valued Richness of Original Audio 
8 of the 15 participants liked TypeTalker’s pause mark 
feature that transfers subtle timings from the original voice 
to the machine’s voice. The pauses in the machine generated 
voice could make it “sound more human-like (F5)”, and 
enabled them to verbally “emphasize (F2)” a phrase by 
generating some temporal suspense. Also, listing items such 
as “Croatia <pause>, Slovenia <pause>, and all (F2)” sounds 
more natural with having the pauses in-between. This 
implies that future machine-synthesized voice technologies 
can largely benefit from transferring richness of the original 
voice to the synthesized voice. 

Although all producers admitted that the machine’s voice 
reduces speech anxiety and enables efficient editing, 8 
missed rich acoustic expressions from their own voice, such 
as “emotion (P8)” or nuances (e.g., “sarcasm (P9)”), 
delivered by subtle “inflections (P4, 6, 14)”. A few (P3, 4, 
14) also wanted to retain the identity of the original speaker 
(e.g., “gender (P4)”). Producers may have been concerned 
that this loss of expression would impact the recipients of 
their comments. To explore how comment consumers were 
affected by the machine voice – whether they, too, missed 
natural expression, and to what extent – we conducted a 
follow-up qualitative study, described in the next section.  
CONSUMER-SIDE EVALUATION 
The goal of this follow-up study was to understand how the 
content-consumer’s comprehension and experience are 
influenced by the two types of voice comments generated 
from each interface: TypeTalker with a machine’s voice, and 
SimpleSpeech with a human voice. For this study, we 
collected qualitative data from participants who conducted a 
set of consumption tasks on the comments produced during 
the first study. 



Sampling 
We recruited 10 (19-39 years old, 6 female) participants at 
our university. We diversified the consumer demographics 
by recruiting participants from varied academic 
backgrounds. Also, unlike the primary evaluation, 4 were 
non-native English speakers comfortable in written English. 
None of them had participated in the producer-side 
evaluation. 
Tasks 
To mirror the task context of the primary study, we placed 
participants in the shoes of a student in an online peer 
discussion context, and asked them to critique producer-
generated explanations of various diagrams, focusing on 
audio delivery. Specifically, we let them first listen to each 
speech comment, and then type a short response (2-4 
sentences) evaluating each of them. We explicitly asked 
them to play the audio rather than reading the transcribed 
texts, so that they could listen to the comments in order to 
compare generic and human voices. 
Procedure and Materials 
At the beginning of the study, the investigator gave a brief 
tutorial about how to use the interface to create a text 
response, then began the first session. There were a total of 
2 sessions, one for each interface condition (TypeTalker and 
SimpleSpeech) which lasted a total of ~45 minutes. In each 
session, the participants conducted 2 commenting tasks that 
took ~5 min each. Each task contained a comment randomly 
assigned from a producer in that condition from the primary 
study, with the constraint that no diagram was presented to 
each participant more than once. Condition order was 
counter balanced.  After both sessions, the study was 
concluded with an audio recorded, ~10 min-long semi-
structured interview. The full study took 1 hour. 
Results 
Consumers were ambivalent as to which voice type they 
preferred. 5 (C2, 5, 6, 7, 9) preferred a human voice in 
general, but were also not particularly bothered by the 
machine voice. 4 (C1, 4, 8, 10) did not express a clear 
preference for either voice, and one, a non-native speaker 
(C3), preferred the machine voice. Even those consumers 
who preferred the human voice did not find that the machine 
voice hampered their comprehension. For instance, C2, who 
preferred the human voice, stated, “The voice, although 
robotic, was concise and it was relatively easy to follow 
along with the diagram.” C5, who also preferred the human 
voice, said that “the machine voice itself didn't bother me. It 
was fine.” 2 participants (C1, C10) did not even notice there 
was a difference between conditions until pressed.  

In general, consumers cited improved elocution through 
standardization as a major benefit of the computer generated 
voice, with possible trade-offs of lost expressivity and 
engagement. For example, C2 thought the machine voice 
was “easier to follow because it's easier to understand a slow 
robotic voice,” while C8 found the machine voice preferable 
“if someone has an accent, or speaks really fast or slow,” and 

remarked that a standardized voice “would be helpful for a 
wider range of students.” Awkward lengthy pauses, 
disfluencies, and speaking rates were continually cited as an 
issue for human-voice comments. C3 explained, “it's much 
more comfortable to listen to the machine voice for me. 
Because the human voice, they have pauses and they [speak] 
more slowly.” Even C9, who preferred a human voice in 
general, admitted, “the [human voices] had a lot of awkward 
pauses. That does follow the natural way of speaking, but 
because of that, it also was more difficult and unclear. 
There’s a lot of rapid changes in pace. So it’s like a pro and 
con.” 

Nevertheless, some consumers felt that the benefit of a 
standardized voice also imposed an effect on their 
engagement. C9 went on to state, “when I am listening to a 
machine, it is a little harder to engage […] Because it’s like 
a one-tone voice, and one-speed.” In addition, C7 found a 
human voice more “soothing” and “easier to pay attention 
to” than the “monotone” machine voice. Future work to 
transfer prosodic features could remediate or remove this 
drawback.   

TypeTalker’s improved text output was also appreciated. 9 
out of 10 participants found the text useful to their 
comprehension of the comment, especially for reminding 
them of the audio (the last did not mention the text). In the 
human condition, 4 participants cited issues with 
SimpleSpeech-produced comments: two (C6, 10) noticed 
typos and were “a bit confused (C6)” as to the mismatch 
between speech and text, while the other two (C4, 8) 
complained about punctuation and grammar. However, two 
participants (C5, C1) in the TypeTalker condition also 
mentioned correcting minor mis-transcriptions in their 
remarks to the commenter, which highlights the addition 
burden placed on commenters by ASR accuracy. Many users 
could not comment directly on the quality of the text as they 
found the quality of speech enough for their understanding.  
DISCUSSION 
From the findings of our evaluations, we gleamed several 
implications for the design of future speech editing 
interfaces. 
Implications from the trade-offs between human and 
standardized voices 
Most of participants in our producer study felt that the 
synthesized voice sounded more professional whereas the 
human voice has a better personal touch. They thought that 
the professionalism of TypeTalker comments would be 
better received in formal or official settings (e.g., lecture, 
audio book publication, etc.), while for other settings, such 
as Snapchatting or a lecture in a smaller class, use of their 
own voice would fit better, since it can convey character and 
personality of the speaker. Interestingly, participants in our 
consumer-side study made similar remarks. This implies that 
the use-case (or work context) of the speech commenting 
system might be one of the deciding factors on which way to 
present spoken comments. 



Results from our consumer-side study suggest that 
standardized voice might enhance the listener’s 
comprehension by reducing distracting aspects of speech 
such as disfluencies, lengthy natural pauses, and fast 
speaking rates. This effect was particularly noticeable for 
non-native English speakers, since for them, comprehension 
of speech was a priority. This implies that TypeTalker may 
enable a more diverse group of individuals to hold a 
discussion than that accomplished by recorded voices alone. 
This would be especially useful for a multi-cultural CSCW 
context. However, more work needs to be done to improve 
the naturalness and expressivity of the machine voice, in 
order to tackle the trade-off from the loss of personal touch.  

Retaining more personal touch from the original speech 
Even though the transferred pause timings could convey 
temporal subtleties of speech, such as rhythm and suspension 
for emphasis, other acoustic qualities remained lost. For 
example, transferring natural intonation, prosody, and 
loudness of the original speech could make the synthesized 
voice sound more similar to the original. The speech 
synthesis research community has been presenting a set of 
technologies, such has pitch-synchronization [46] or 
emotional prosody modelling [40], that could be used to 
realize such features.  

Hybrid approach: mixing original and synthesized voice 
Future designs could take a hybrid approach that takes 
different advantages from both of the approaches by 
acoustically mixing the synthesized voice with the original 
speech. This could enable type-written generation of audio 
without having to re-record that part of speech. The latest 
speech conversion technique promises seamless stitching of 
synthesized voice into an existing speech stream [23]. Also, 
a speaker de-identification technique can be used when users 
want to anonymize their voice for reduced self-
consciousness [24]. 

CONCLUSION AND FUTURE WORKS 
This paper presents TypeTalker, a multi-modal commenting 
system that helps reduce self-consciousness of live voice 
recording by substituting a user’s voice for a synthesized one 
while respecting the temporal alignment of extra-modal 
metadata such as marks and gestures. Our system’s keyboard 
based interface supports a variety of revision needs, such as 
correcting transcription errors, deleting existing words, and 
inserting new words, under a consistent and seamless single-
mode workflow. We evaluated efficacy of TypeTalker in 
comparison with SimpleSpeech [41], one of the latest speech 
commenting interfaces. Results from the producer-side study 
show reduced speech anxiety and more efficient revision 
when using TypeTalker, while results from the consumer-
side study suggest the promise of enabling more types of 
speakers to communicate effectively. 

Finally, our producer evaluation assumed moderately high 
ASR accuracy in a quiet lab setting. In reality, multiple 
factors can degrade the transcription quality: environmental 
noises, unavailability of high quality transcription services, 

or non-native speakers. This could have an impact on both 
editing time and speech comment consumption. It would be 
interesting to explore how the dynamics of design and user 
experience change in scenarios where transcription error 
rates are high. 
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