
TypeTalker: A Speech Synthesis-Based
Multi-Modal Commenting System

Ian Arawjo
Cornell University

Ithaca, USA
iaa32@cornell.edu

Dongwook Yoon
Cornell University

Ithaca, USA
dy252@cornell.edu

François Guimbretière
Cornell University

Ithaca, USA
francois@cs.cornell.edu

ABSTRACT
Speech commenting systems have been shown to facilitate
asynchronous online communication from educational
discussion to writing feedback. However, the production of
speech comments introduces several challenges to users,
including overcoming self-consciousness and time
consuming editing. In this paper, we introduce TypeTalker,
a speech commenting interface that presents speech as a
synthesized generic voice to reduce speaker self-
consciousness, while retaining the expressivity of the
original speech with natural breaks and co-expressive
gestures. TypeTalker streamlines speech editing through a
simple textbox that respects temporal alignment across edits.
A comparative evaluation shows that TypeTalker reduces
speech anxiety during live-recording, and offers easier and
more effective speech editing facilities than the previous
state-of-the-art interface technique. A follow-up study on
recipient perceptions of the produced comments suggests
that while TypeTalker’s generic voice may be traded-off
with a loss of personal touch, it can also enhance the clarity
of speech by refining the original speech’s speed and accent.
Author Keywords
Speech comments; multi-modal comment; automatic speech
recognition; transcription error; self-consciousness;
transcript-based speech editing.
ACM Classification Keywords
H.5.1 Multimedia Information Systems: Audio input/output;
H.5.2. User Interface: Voice I/O; H.5.2 User Interfaces:
Interaction styles; H.5.3 Group and Organization Interfaces:
Collaborative computing.
INTRODUCTION
Speech commenting has empowered a variety of multimedia
collaboration systems for online discussion [29, 55],
writing/design feedback [26, 27, 45, 52–54], and cooperative
storytelling [34]. Often in these systems, recorded speech

serves as the core modality around which other interactive
expressions (e.g., gesture, inking, and video) are weaved
together in sync. The interface that enables the production
and editing of speech comments is therefore central to the
success of a multimodal collaboration system.

Recent studies report two major problems with existing
speech commenting interfaces. First, speech commenters
tend to be self-conscious during live-recording, distracted by
speech disfluencies such as ‘um’ or ‘uh’, stutters, or long
pauses [29, 39, 41, 55]. People may also feel disturbed when
hearing their own voice [21, 55]. Second, while editing may
be a step toward reducing self-consciousness, editing of
spoken speech comments is taxing. Over the past decade,
several transcription-based speech editing systems have
shown that using a transcript as a proxy for audio offers
effective semantic editing of spoken content [36, 41, 49].
However, these interfaces presumed an a priori audio
transcription. To cope with the context of spontaneous
speech commenting, these interfaces introduce separate
modes of interaction: text-like audio copy and deletion,
correcting live transcript from error-laden speech
recognition, and re-recording for progressive revision [41,
49]. Tracking and switching between these multiple modes
can easily confuse users [35].

To address these issues, we built TypeTalker, a speech
synthesis-based multi-modal commenting system. In
TypeTalker, the user’s voice entry is transcribed to later be
synthesized into a computationally refined generic voice. As
we show, the synthesized voice reduces speaker anxiety,
since the audio in the standardized voice lacks the linguistic
glitches of the original speech, and doesn’t cause the
affective disturbance of hearing one’s own voice [21, 29, 55].
In addition, we show that this approach reduces editing time
by enabling an error-laden text transcription to act as a proxy
for simultaneous editing of audio and any underlying
metadata. This method allows temporal metadata, in this case
gestures on a document, to be captured and replayed in sync
with a speech comment, even after the comment is edited.

The functional benefit of TypeTalker’s synthesis-based
approach is its streamlined workflow for revising speech
(Figure 1) in comparison with that of traditional
transcription-based speech editing systems (Figure 2). While
the captions (text) in a traditional interface only work as
placeholders for utterances, TypeTalker guarantees a match

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CSCW '17, February 25-March 01, 2017, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4335-0/17/03…$15.00
DOI: http://dx.doi.org/10.1145/2998181.2998260

between audio and text because the voice is synthesized from
the text. This approach enables simpler and more efficient
revision, as caption correction and content editing are unified
through single-mode keyboard editing over the transcribed
text. For example, TypeTalker supports generative editing
operations (e.g., insertion of new words or syllables) via
simple text editing, while the traditional approach requires
recording (or re-recording) additional voice content.

To evaluate the efficacy of TypeTalker’s design, we
conducted two comparative evaluations against a state-of-
the-art peer system built under the traditional approach [41].
The primary study asked participants to produce voice
comments in each interface, and found that TypeTalker’s use
of a synthesized voice significantly reduces public/social
self-consciousness. Comment producers also unanimously
reported that TypeTalker’s streamlined workflow enabled
more lightweight and efficient speech editing compared to
the previous technique. A follow-up study let participants
listen to two types of voice comments generated from the
primary evaluation. While some participants reported that
they missed the personal touch of human voice when
listening to TypeTalker’s machine-generated voice, some
also felt the machine was easier to understand compared to
the human condition, thanks to its clear articulation and
steady pace. Together these two studies highlight the
potential and possible trade-offs of our approach in a
constructive and collaborative use context.
RELATED WORK
Our study was inspired by previous work on speech-centered
multi-modal collaboration systems and on psychological
analysis of user behavior when using such systems.

In the field of computer supported cooperative work
(CSCW), speech has been used as a central mode of
communication in many different multimedia collaboration
systems for supporting discussion [29, 55], feedback [26, 27,
45, 52–54], and storytelling [34]. Jonathan Grudin pioneered
studies on issues surrounding voice application in a
cooperative setting [17]. His study was first to raise

awareness about the speech consumption problem: that
browsing often takes longer than speaking. The subsequent
studies of the field solved that problem by introducing
interactive systems using binary acoustic structuring [20]
and waveform indexing [55]. In this study, we aim to tackle
the production side of problem, which has been frequently
documented [19, 29, 39, 41, 55] but not yet resolved.

Use of rich media allows communicators to express
equivocal and nuanced ideas more effectively by clarifying
ambiguities [13]. For instance, voice comments have proven
more effective than textual comments for writing feedback
as they convey nuances and emotions of the commentator
[10, 29, 55]. In addition to speech, researchers have
combined various types of visual cues to enrich spoken
comments. Ink mark-ups act as a visual mnemonic or future
retrieval for indexing [26, 52, 53]. Gesture provides a deictic
cue that delivers indexical information that is co-expressive
to speech [45, 54]. Moreover, video can leverage embodied
nuances such as facial expressions and upper-body gestures
to enhance communication [14, 25]. Our interface also
benefits from co-expressive speech + gesture commenting,
but it goes beyond previous work by resolving the problems
of speech recording in terms of user psychology and ease of
revision.

Speech comment editing is a well-explored topic in HCI.
Through the years, different designs to speech editing
interfaces have been proposed and evolved. In professional
audio/video production software, low-level audio editing
was made possible through waveform representation over a
timeline [2–4, 6]. Since the fine-grained timeline in the
waveform interface introduced an extra burden on novice
users, especially in the context of speech editing, researchers
structured audio into a higher-level representation by

Figure 1. TypeTalker workflow. A user can finish different
types of editing job in one-pass: correcting the ASR error

(‘fox’ mistranscribed as ‘box’), and changing a spoken word
content (from ‘quick’ to ‘cute’).

Figure 2. The traditional transcription-based speech editing
workflow requires a user to switch between three different
input modes: correcting captions (‘box’ to ‘fox’), editing

contents (deleting ‘quick’), and re-recording (adding ‘cute’).

analyzing its acoustic structure, such as speech/non-speech
chunks, phrases, or sentences, for browsing [5, 44] or editing
[1, 20]. A more recent approach employs time-synchronized
captions from automatic speech recognition to augment the
edited audio chunk with semantic meaning. This approach
enables visual skimming and browsing of audio without
requiring users to spend time tediously re-listening [9, 38, 47,
51]. Moreover, snapping the editing prompt to a word’s
boundary afforded text-like audio/video editing [7, 36, 41,
49, 54]. Contrary to the previous transcription-based systems
where audio is loosely coupled with the transcription, our
system’s synthesized audio is guaranteed to say exactly what
is written and edited as text. This approach not only enables
faster speech revision, but also supports generative editing
operations, such as insertion or rephrasing of words that used
to require cumbersome re-recording, through keyboard input.

Captions from ASR have transcription errors by nature. On
one hand, words from the error-laden transcript have been
shown to act as semantic cues for extracting key points or as
navigational cues for browsing [51, 54]. On the other hand,
recognition errors hurt listener comprehension [43]
especially for non-native speakers [33]. When the
recognition rate is very low, listener comprehension might
be as bad as [47] or even worse than [31] that with no
transcription at all (e.g., reading homophone transcription
errors can induce confusion by misleading listening
comprehension [54]). While all of these studies suggest the
impact of transcription errors on recipient psychology, a
recent report from Sivaraman et al. suggests that the pressure
to correct transcription errors may also increase the workload
of speech producers [41].

Previous research on speech interfaces found design factors
that affect speaker psychology. While ordinary voice
conversation is ephemeral, if speech interfaces give people a
sense of being recorded, they tend to speak differently [11].
Even a physical awareness about the recording device (e.g.
awareness about a wired lapel mic) can impact speaker
response, reducing creativity and disclosure and introducing
speech disfluencies [48]. Recent studies on asynchronous
speech commenting systems suggest several factors that

might increase cognitive load for speech commenting: lack
of lightweight editing features, concerns about one’s speech
disfluencies, and affective disturbance of hearing one’s own
voice [21, 29, 55]. Our qualitative results suggest how the
use of voice anonymization and ease of revision can reduce
speaker anxiety in speech editing interfaces.
DESIGNING TYPETALKER
The main design contribution of TypeTalker is a novel
interface for editing speech + gesture comments as text in a
textbox. To start, we provide the reader with a brief summary
of the RichReview system on which our TypeTalker design
and implementation is based.
Building TypeTalker Based on RichReview
The TypeTalker editing interface was integrated and
evaluated in the context of the existing multi-modal
collaborative annotation system RichReview by Yoon et al.
[54, 55] (Figure 3). RichReview enables speech + gesture
commenting on PDF documents. To record a comment with
RichReview, the user highlights a line of the document and
‘tears’ a space beneath The system offers time-synchronized
recording of mouse gestures that can effectively augment
verbal description of speech with a deictic visual aid of an
animated blob (e.g., Saying “This section needs a revision.”
while dragging over text, Figure 3. (b)). These gestures are
time-aligned with the recorded speech and replayed in sync
with it. Users can replay their comment by pressing the
‘Play’ icon and navigate during replay by either (1) clicking
on passages of text or (2) clicking a ghosted remnant of an
associated gesture.
TypeTalker Design Rationale
We set the following three objectives to make the design
decisions which embody the needs and challenges learned
from prior work.

Reducing self-consciousness A sense of being recorded can
introduce anxieties in speech production. Two major sources
of anxiety are the speaker’s concerns about the way one’s
voice will sound to the recipients (e.g. ‘um’s), and the
affective disturbance of hearing one’s own voice. By using
an automatically generated text-to-speech voice instead of
the speaker’s own voice, we let the user be less self-
conscious about recording their voice.

Single-mode speech editing Previous editing systems [36,
50, 54] maintain a loose correspondence between text token
and source audio snippets. This setting (1) requires
producers to do “double-work” for editing audio and

Figure 3. TypeTalker inside the RichReview system [54] is

designed to record, edit, and replay speech + gesture
comments.

Figure 4. Editing process for the spoken comment

correcting transcription errors, (2) introduces confusing
interaction modes between audio editing and caption editing,
and (3) slows down frequent and small edits (e.g., adding the
past-tense ending, “ed”), since new words can only be
inserted by speaking. In TypeTalker, synthesized audio is
generated based on text tokens as the user edits them. This
tight coupling of edited audio to text tokens enables a unified
single-mode revision process for audio (Figure 1).
Retaining expressivity of the original speech + gesture
recording A pure synthesized voice generated based only on
the transcribed text misses the richness of multi-modal
inputs, such as pauses in the user’s speech or co-expressive
gestures. In TypeTalker, the synthesized speech retains
expressivity of the source speech, such as natural pauses.
Also, time-synchronized gestures recorded with the original
speech are transferred to the corresponding words of the
synthesized voice.
Editing Interface
TypeTalker allows editing of a speech + gesture comment
through standard keyboard-based text editing. In this section,
we illustrate a typical user workflow.

Imagine that a user wants to comment on a diagram. In our
example, she begins a new comment beneath the prompt. A
tooltip waveform and icon blink to remind the user that they
are in recording mode (Figure 3. (a)). While recording, she
can refer to areas of the diagram by making deictic gestures
(see (b)). Inside the text box, a red marker pulses at the place
of insertion, reminding the user that they are in recording
mode (c).

Once the user stops recording, the system is ready to support
editing (Figure 4). It first swaps the blinking marker with the
final ASR transcription results (a). In TypeTalker, each word
of the ASR transcript is linked to time-stamped metadata
(such as a gestures). To enable text-like single-mode editing,
the system presents the transcription as a normal text inside
the textbox by managing this audio correspondence data in
the background, hidden to the user.

At this point, the user can review their comment and edit it
through standard keyboard-based text editing. It is important
to note that one can both correct transcription errors and
insert new content in the same textbox with a seamless and
consistent keyboard interaction. For instance, in (b), the user
fixed the mis-transcribed ‘hydrogen’ to ‘erosion’ as well as
typed-in “along the cliffside”). Editing can also include
deletion of portions of speech, punctuation revision, and
pause manipulation. When the user wants to add new
contents with gesture or speech pauses, they place their
cursor at the end of the text and press the ‘Enter’ key to begin
a new recording (c). The same revision process follows.

Upon pressing the ‘Play’ icon for playback, the system
narrates the newly edited text, together with an animated
visualization of gesture and pen input properly synchronized.
This multi-modal replay gives a vivid multi-modal rendering
that supersedes just reading the transcribed text.

One of our goals was to retain some of the expressive quality
of the user's original voice. Of particular concern was the fact
that speech-to-text lacks the user’s natural breaks in speech.
We alleviated these concerns by transferring pause from the
original speech to the synthetic voice. To help users control
which pause they would like to keep, the in-line markers ‘♦’
denote a short pauses, while we append a period ‘.’ for longer
pauses. We initially also transferred select pitch contours
per-word according to their root-mean-squared-error with
the synthesized word's contour; however, we were not able
to find the right balance between the articulated prosody of
speech-to-text voice and the user's natural prosody. The
system used in our evaluation had the pause transfer feature
only, but more than half of the participants reported that the
retained pause timing could effectively convey the majority
of expressive richness in the original speech even without
having prosody transfer.
ALGORITHMIC METHODS
In this section, we describe our implementation methods in
roughly chronological order from recording to playback.
Real-time Transcription
For transcription, our system streams microphone data to the
IBM Watson service [22], which we also use for synthesis.
For each recognized word we obtain timestamp data. As the
system revises its matches, we store the current best match,
and permanently append the final matches at the current
insertion point when the user stops recording. Any special
markers received from Watson are ignored.

Our early prototype opted to show the live transcription
results in the textbox while recording; however, we observed
in the first pilot study that on-the-fly transcription errors
distracted users from their commenting job, because they
became concerned with spotting and fixing errors as the
transcript updated. Therefore, we opted to minimize
distraction by presenting a simple blinking marker only,
much like a text-editing caret.
Transcript Post-processing
The ASR transcript is bereft of textual formatting like
capitalization and punctuation. Since formatted text reduces
workload (users don’t have to manually punctuate) and eases
comprehension of the text, we implemented pause-length-
based heuristics for automatic punctuation and capitalization
of the transcript.

Inline pause markers retain some of the original richness of
the user’s voice when synthesizing voice from the transcript.
Although our system cannot detect grammatical commas, we
can transfer their audible effect (a break in the sentence) in a
homogenized fashion with other punctuation, such as
hyphens. We chose to show pauses to users rather than hiding
them to allow users to remove unnatural breaks in their
speech, for instance due to hesitation. For both interfaces in
our evaluation, we analyzed the final match for pauses by
marking gaps between timestamps. We inserted a pause
marker between words of the transcript if the gap is greater

than 30 msec. For TypeTalker, pause markers are a ‘♦’
symbol (for gaps less than 1 sec) or a period (for gaps 1 sec
or greater). Our use of pause markers instead of commas is
similar to the pause tags found in [36]. We automatically
capitalize a word following a period.

During voice insertion, we also capitalized the first word if
the previous word ended in a period. This minimal
punctuation was introduced to shorten user editing time and
make voice insertion fluid and intuitive.
Realignment and Synthesis
Our system incorporates gestures as extra-modal temporal
metadata linked to speech recordings. Since the user can
freely edit text, any edits to the transcript must be reflected
in the playback of these gestures. For instance, if the user
deletes a sentence, any temporal metadata recorded “inside”
that sentence should also disappear. We opted to realign
gestures by comparing the edited text to successive versions
of previous text, starting with the original transcript.

Figure 6 illustrates our approach through a simple example.
In (a), a user records their voice and gestures while speaking
the word "fox." The machine transcribes "fox" erroneously
as "box" (b). When a new transcript is inserted from voice
recording, the text's current state is saved as a sequence of
tokens. A token links a transcribed word (as text) to the
segment of recorded audio in which it appeared (as
timestamp info). We call this initial token sequence the
"base" tokens. Pauses both before and after a base token are
stored so that the length of each pause marker on playback
can be deduced by the tokens nearest to it. Gesture
timestamps and other metadata is stored separately.

Next, the user corrects the mis-transcription using her
keyboard. When she presses Play (c) the comment is
compiled. Compilation comprises three steps:

(1) stripping both the base text and the edited text of any
punctuation and pause markers, as well as making the
text lowercase

(2) comparing the two texts with a string edit difference
algorithm [32] to compute a sequence of operations on

the base text. The four operations are: insert (insert a
token before the current token at the index position),
delete (remove the token at the index position), replace
(change the token’s word at the index position), and
unchanged (do nothing). The replace operation also
stores the edited word. The difference algorithm infers
which words are 'inserted' or 'deleted.' The replace
operation is a concatenation of back-to-back 'delete'
and 'insert' operations (d).

(3) applying these operations to the base tokens. For a
delete operation, the token is deleted. For an insert
operation, a new token is inserted at that point in the
sequence. This token has no timestamp information, as
it was generated through typing. For a replace
operation, the word stored in the base token is replaced
by the edited word. The token's timestamp information
remains unaffected. In addition, pause information for
output tokens is computed by comparing the remaining
pause markers in the edited text with the base tokens.

The output is a new "edited" token sequence. For playback,
these edited tokens are flattened into a transcript and
converted to Speech Synthesis Markup Language with
<break> tags for pauses. TypeTalker also dampens user
pauses along a sigmoid curve that approaches our
synthesizer's length for pauses after a period (~450ms).
Mapping Gestures to the Edited Tokens
In TypeTalker, gestures recorded during speech must be
automatically remapped when the user edits the text. Since
the synthesized voice is spoken at a different rate than the
user’s, gestures made during recording also need to be
stretched. Both features rely upon situating words in the
synthesized audio. Since timestamp information was not
available for the speech-to-text output, we ran the audio and
edited transcript through HTK forced alignment [8] to obtain
timestamps. From both the edited tokens and the speech-to-
text timestamps, we then computed a sequence of
“synthesized” tokens. Gestures could then be recomputed
from both the edited tokens and the synthesized tokens
through a split-map-reassemble process similar to
Golovchinsky and Denoue’s visual segmentation scheme
[16]. Our method respects the time correspondence of speech
tokens and gesture strokes. First, in the splitting phase,
gesture strokes in the original recording (Figure 5. (a)) are
chopped into pieces of strokes (see (b)), where temporal
information corresponds with co-occurring tokens in the
edited sequence. The chopped pieces are then mapped to the

Figure 6. (a) The user speaks and gestures. (b) The user
finishes recording, and ASR results are inserted into the
textbox. (c) The user changes “box” to “fox.” (d) The edit

detected as a replace operation. (e) The edits are compiled into
a final version. Notice that the gesture remains.

Figure 5. The split-map-reassemble process for gesture

transfer.

corresponding speech tokens in the synthesized sequence (c).
Finally, we combine the reassembled gesture-piece sequence
with potentially clipped pieces by lumping consecutive runs
of gesture pieces into a single continuous gesture stroke (d)
that respects the new beginning and ending time-stamps.
Mapping across Multiple Edits
Since it is unreasonable to expect users to make their
comment in a single pass, our system supports insertion of
speech + gesture inside existing comments. This raises the
technical question of where the new recording's tokens
should be inserted into the previous base sequence, since the
user may have made several textual edits, maybe even
deleting entire sentences. In our system, when the user
inserts a new voice comment in-line, we set the base tokens
to be the previous edited tokens, and inject the recorded
tokens at the insertion point. In other words, the previous
edits to the text are "committed" to be the reference for future
edits. We found this approach effective at maintaining
gestures across multiple edits, even when the user strays far
from their original comment.
Performance across Multiple Edits
Rather than sending the entire comment to speech-to-text on
each replay, only sufficiently changed sequences of text are
synthesized. The previous edited token sequence is chunked
by punctuation and pause duration, and each section is
compared to the new edited sequence. The synthesis result(s)
are then stitched together with any preexisting sections of
audio for the final comment.
Implementation
TypeTalker was implemented in the browser with Javascript,
and utilized a back-end Python server for interfacing with
HTK and other off-the-shelf audio analysis tools. In our
prototype, WAV files were sent locally to the server for
analysis. Since our synthesizer returned audio the quickest
when the ogg-opus codec was specified, we also wrote a
client-side decoder to convert ogg-opus to standard WAV
format to improve synthesis speed.
PRODUCER-SIDE EVALUATION
Our primary evaluation aimed to study whether our new
design approach of TypeTalker could reduce producer
speech anxiety and promote faster speech editing by
comparing it to the SimpleSpeech system [36], a design
based on the traditional approach. To draw out a quantitative
comparison as well as qualitative implications for the future
design improvements, we employed quantitative-major
embedded design mixed methods where a task-driven lab
study embeds exploratory qualitative inquiries such as
observation notes and interviews [12].
Peer System
Our interface was evaluated against a prior speech editing
interface, SimpleSpeech [41], that adopts the previous
approach. SimpleSpeech presents speech audio as a series of
word tokens that affords text-like editing operations,
including deletion, copy, cut, and paste. Transcription
correction can be done in a small pop-up box that appears

when the user first selects the target word token and then
types substitute texts. As shown in Figure 2, it also has
confidence shading [47], instant word replay, and a feature
for running through the words by token. Other than those
core features all the interactions remain consistent across the
two interfaces.
Sampling
For this formative evaluation process, we recruited 15 young
(18-22 years old, 14 female) undergraduate students at a US
university. We selectively sampled participants who speak
native or fluent English (12 native speakers), since the
speech recognition system was optimized for standard
American English pronunciations and accents. Our
participants had different majors spanning across art,
science, and the humanities.
Data Collection
To set up a concrete and substantive use context, we put
participants in the shoes of a student who takes part in the
discussion activities of online coursework at a University.
More specifically, we gave participants a series of
commenting tasks that asked them to record their speech and
gesture on given diagrams. The diagrams depict middle-
school level academic topics, such as the ‘bottle recycle
process’ or the ‘coastal erosion process’ shown in Figure 3.
We only selected diagrams with very easy concepts and
minimal text, because we wanted the participants to focus on
our interface rather than spending too much effort thinking
about what to say. Each participant performed 3 sessions of
tasks; in each, they created a paragraph-long speech
comment. These tasks imposed proper amounts of effort on
the participant to the extent that they had to leverage the full
functionalities of the system in a reasonable time range (total
3~6 min) for this 1.5 hour-long study.

After the sessions for each condition, participants answered
a set of surveys for rating perceived public/private speech
anxiety and overall task loads. The anxiety measure was
adopted from the Scheier & Carver’s Self-Consciousness
Scale (SCS-R) by selectively contextualizing four questions
about public speech to the asynchronous speech recording
use case [37]. The workloads were measured as the weighted
NASA-TLX scale [18]. Participant activities were also
logged to measure the number of different recording and
editing behaviors as well as the transcription results.

To collect the qualitative data, the investigator sat behind the
participants’ workbench, observed her task practices, and
took notes of any notable incidents. Implications from the
observations were referred back from the post-task interview
for two purposes. First, we asked ‘how’ and ‘why’ questions
to the participants to better understand the rationale behind
their behaviors [28]. Second, we did member checking [30]
to validate our on-the-fly interpretation of participant
behavior.

The task sessions were followed by a ~15 min-long semi-
structured in-depth interview. The interview was structured

in a top-down manner where the general implications were
asked first, and more specific leading questions followed.
The topic of the questions covered usability & performance,
learnability, speech anxiety, editing behaviors, strategies for
managing speech recognition errors, comparison of speech
commenting to face-to-face speech or textual commenting,
etc. Also, the interviewer sometimes brought up odd
behaviors observed in the interviewee’s task sessions to
better understand what happened and how they felt about it.
Entire interview sessions were audio-recorded for potential
future analysis.
Data Analysis
We performed the paired t-test for the quantitative data, such
as the self-consciousness or workload indices. For generating
quantitative implications, we conducted theoretical sampling
[15] by comparatively analyzing data from the two different
UIs. After collecting and transcribing interview data into
texts, the lead investigator performed an open-coding
followed by a flat-coding to draw out theoretical categories
of the implications in consultation with the coauthors. To
maximize the validity of our findings, we triangulated
different types of data, and consistently looked for negative
cases to falsify potentially defective evidence [30].
RESULTS
The participants generated a total of 90 comments (15 × 2 ×
3) for the tasks. On average, the comments were 20.3 sec
long (SD = 16.1) with 39.6 words (SD = 36.2) for
TypeTalker, and 18.0 sec long (SD = 14.3) with 36.9 words
(SD = 35.4) for SimpleSpeech. They also made a couple of
gesture strokes for each session (M = 1.50, SD = 2.08). None
of these basic measures were significantly different between
the two conditions.

Average recognition accuracy of the source speech measured
as word error rate (WER) was .19 (SD = .10) in the
TypeTalker condition, and .16 (SD = .09) for the
SimpleSpeech condition which are slightly higher than
IBM’s official data of .104 [42] possibly due to the
participants’ speech disfluencies. The response speed of the
transcription engine was near real-time as we live-streamed
the audio to the Watson’s cloud server in the 16-bit 22.05
kHz PCM format.
Reduced Self-consciousness
The participants perceived significantly less public/social
self-consciousness during speech when using TypeTalker,
thanks to the synthesized generic voice imposed less
concerns about public performance than the peer system that
records audio as is (see Figure 7, left). In our SCS-R
measure, ratings for public/social-anxiety were significantly
lower with TypeTalker (M = 2.57, SD = 1.13) than
SimpleSpeech (M = 3.06, SD = 1.05, p = .019, paired t-test,
Cohen’s d = .46).

From the qualitative responses, we found that a total 12 of 15
participants reported lowered self-consciousness. First, 7
participants (P1, 2, 4, 8, 10, 13, and 14) reported that the

TypeTalker interface alleviated their concerns about the way
their speech will sound to the recipient, because the
machine’s voice doesn’t retain small speech disfluences
including ‘uh’, ‘um’, stutters, hesitations, or long pauses. In
contrast, voice recordings in SimpleSpeech made them
“nervous that I would just keep going like ‘um, um...’ in the
middle of my statements. It just seems like there was a lot
more that could go wrong that way. (P13)”. There was no
participant in our sample who felt more anxiety in the
TypeTalker condition.

Second, 7 participants (P2, 4, 5, 6, 7, 11, and 13) liked that
they don’t have to listen to their own voice, which often
causes affective disturbance [21]. To quote P13, “I
personally hate listening to my own voice on recordings
[laugh]. It’s weird to me. It’s a little off-putting (P13).” This
disturbance remained salient during the revision phase, as
P11 stated “I don’t like hearing my own voice. So when I try
to replay them, I almost muted the computer”. The other 8
participants didn’t mention the affective disturbance from
hearing their own voice.

Finally, 6 participants (P4, 5, 8, 9, 13, and 14) were less
concerned about making mistakes while using TypeTalker
because they “knew that it was easier to correct those
mistakes (F5)” and “required much less work (F8)” using the
keyboard interface afterwards.
Effective Revision
The participants were unanimous that TypeTalker’s type-
written editing was not only easier to learn, but also more
lightweight and effective for editing. The participants liked
familiarity of the normal text editing interface, single-mode,
and no need for re-recording. This quote summarizes the
implications well:

“TypeTalker was easier, just because it was very
similar to like normal typing, I could just go in
and fix things, and you know I could change
words, I could change sentences if I wanted to
without having to worry about it, whereas with SS,
if I wanted it to change or rephrase something, I
have to go in and re-speak it, and it usually comes
out sounding different than like louder, like just
awkward (P14).”

Figure 7. Quantitative results from TypeTalker (TT) and
SimpleSpeech (SS) conditions (95% confidence intervals).

0
1
2
3
4
5

TT SS

Self-consciousness
rating

0

0.5

1

1.5

TT SS

Number of
re-recordings

0
2
4
6
8

10

TT SS

Number of
replays

p = .019, d = .46 p = .041, d = .40 p < .001, d = 1.46

Reduced confusion from unified editing mode
A total 9 of 15 participants said that TypeTalker’s single-
mode editing was straightforward to learn and use, and more
efficient. Although most of them felt that SimpleSpeech’s
interface was easy enough to get accustomed to in a
reasonable learning time, they oftentimes felt the interface
“confusing (P6),” “frustrating (P8),” or “not knowing what
to press (P5)”. They felt that there were too many options,
and as P12 stated, “when to say, when to type, when to press
enter was different than expected”. This suggests that
TypeTalker’s design decision to unify audio and text editing
significantly improves editing efficacy. For some users,
audio-text division of SimpleSpeech was not only about the
mode confusion issue during editing. Sometimes, when users
accidentally deleted an audio token, they tried to recover it
by typing that transcription to the nearest token, losing audio
although showing the correct transcript: “I often deleted my
voice recording closing a glitch. That was the hassle (P10).”

Efficient content editing
Editing spoken content was more efficient in TypeTalker,
because, unlike in SimpleSpeech, it didn’t require
participants to re-record parts (11 of the 15 participants).
When asked about how hard they worked for editing content
other than transcription errors, the survey response showed a
trend that they edited more content in TypeTalker than
SimpleSpeech (p = .082, Cohen’s d = .47). More pauses were
edited during the revision process as well. In the original
speech data, the number of pauses were not significantly
different, but the end results had significantly less pauses in
TypeTalker condition. This is possible because of a trend
where more pauses were deleted during editing in the
TypeTalker system (p = .093, Cohen’s d = .33).

To insert new audio contents in SimpleSpeech, users had to
re-record the part of speech, since there is no way to create
new audio from the edited text. For our participants, this re-
recording worked as the major drawback for editing content
(11 of 15 participants). This implication is reflected in log
data that shows that users rarely re-recorded in the middle of
a SimpleSpeech stream (M = .84, SD = 1.19). Also, when
they were given the typing capability to add contents in
TypeTalker, the use of the insertion feature became
significantly rarer (M = .37, SD = 1.12, p = .041, Cohen’s d
= .40), because they preferred to just type to insert voice
rather than recording that part again. They preferred not to
re-record speech not only because it was cumbersome, but
also because the inserted voice sounds awkward and felt
“forced in (P5)”, “misplaced (P8)”, “louder (P14)”, “off-flow
(P14)”, or “choppy (P15)”.
Implications on correcting transcription errors
Even though there seems to be more pressure to correct
transcription errors in TypeTalker than SimpleSpeech
“because the program will specifically read what was
transcribed (P8)”, such pressure was evened out by the three
factors beneficial to the TypeTalker condition. First, editing
by keyboard input was easier in TypeTalker as stated above.
Second, SimpleSpeech users also felt pressure to fix mis-

transcriptions, so that the recipient of the messages wouldn’t
be confused by the wrong text (13 of the 15 participants).
Finally, editing transcriptions in SimpleSpeech forced the
participants to re-listen to their audio, because they had to
match the text to the voice. There were significantly more
replays in SimpleSpeech than TypeTalker (p < .001, Cohen’s
d = 1.46). Re-listening was upsetting for the participant, not
only because it was cumbersome (P2, 7, 8, and 14), but
because re-listening during editing (P11) also caused the
self-disturbance problem of hearing one’s own voice.

Nonetheless, some other users liked that they could re-listen
to their voice in SimpleSpeech, because it helped remind
them of the content of their original narration (F9 and 11).
Although the TypeTalker system didn’t have the re-listening
feature for replaying the original voice, one might improve
the transcription correction process by including an in-situ
replay feature as a mnemonic device for the system in the
future (e.g., replay the snippet of original speech, when
selecting words for editing).
Valued Richness of Original Audio
8 of the 15 participants liked TypeTalker’s pause mark
feature that transfers subtle timings from the original voice
to the machine’s voice. The pauses in the machine generated
voice could make it “sound more human-like (F5)”, and
enabled them to verbally “emphasize (F2)” a phrase by
generating some temporal suspense. Also, listing items such
as “Croatia <pause>, Slovenia <pause>, and all (F2)” sounds
more natural with having the pauses in-between. This
implies that future machine-synthesized voice technologies
can largely benefit from transferring richness of the original
voice to the synthesized voice.

Although all producers admitted that the machine’s voice
reduces speech anxiety and enables efficient editing, 8
missed rich acoustic expressions from their own voice, such
as “emotion (P8)” or nuances (e.g., “sarcasm (P9)”),
delivered by subtle “inflections (P4, 6, 14)”. A few (P3, 4,
14) also wanted to retain the identity of the original speaker
(e.g., “gender (P4)”). Producers may have been concerned
that this loss of expression would impact the recipients of
their comments. To explore how comment consumers were
affected by the machine voice – whether they, too, missed
natural expression, and to what extent – we conducted a
follow-up qualitative study, described in the next section.
CONSUMER-SIDE EVALUATION
The goal of this follow-up study was to understand how the
content-consumer’s comprehension and experience are
influenced by the two types of voice comments generated
from each interface: TypeTalker with a machine’s voice, and
SimpleSpeech with a human voice. For this study, we
collected qualitative data from participants who conducted a
set of consumption tasks on the comments produced during
the first study.

Sampling
We recruited 10 (19-39 years old, 6 female) participants at
our university. We diversified the consumer demographics
by recruiting participants from varied academic
backgrounds. Also, unlike the primary evaluation, 4 were
non-native English speakers comfortable in written English.
None of them had participated in the producer-side
evaluation.
Tasks
To mirror the task context of the primary study, we placed
participants in the shoes of a student in an online peer
discussion context, and asked them to critique producer-
generated explanations of various diagrams, focusing on
audio delivery. Specifically, we let them first listen to each
speech comment, and then type a short response (2-4
sentences) evaluating each of them. We explicitly asked
them to play the audio rather than reading the transcribed
texts, so that they could listen to the comments in order to
compare generic and human voices.
Procedure and Materials
At the beginning of the study, the investigator gave a brief
tutorial about how to use the interface to create a text
response, then began the first session. There were a total of
2 sessions, one for each interface condition (TypeTalker and
SimpleSpeech) which lasted a total of ~45 minutes. In each
session, the participants conducted 2 commenting tasks that
took ~5 min each. Each task contained a comment randomly
assigned from a producer in that condition from the primary
study, with the constraint that no diagram was presented to
each participant more than once. Condition order was
counter balanced. After both sessions, the study was
concluded with an audio recorded, ~10 min-long semi-
structured interview. The full study took 1 hour.
Results
Consumers were ambivalent as to which voice type they
preferred. 5 (C2, 5, 6, 7, 9) preferred a human voice in
general, but were also not particularly bothered by the
machine voice. 4 (C1, 4, 8, 10) did not express a clear
preference for either voice, and one, a non-native speaker
(C3), preferred the machine voice. Even those consumers
who preferred the human voice did not find that the machine
voice hampered their comprehension. For instance, C2, who
preferred the human voice, stated, “The voice, although
robotic, was concise and it was relatively easy to follow
along with the diagram.” C5, who also preferred the human
voice, said that “the machine voice itself didn't bother me. It
was fine.” 2 participants (C1, C10) did not even notice there
was a difference between conditions until pressed.

In general, consumers cited improved elocution through
standardization as a major benefit of the computer generated
voice, with possible trade-offs of lost expressivity and
engagement. For example, C2 thought the machine voice
was “easier to follow because it's easier to understand a slow
robotic voice,” while C8 found the machine voice preferable
“if someone has an accent, or speaks really fast or slow,” and

remarked that a standardized voice “would be helpful for a
wider range of students.” Awkward lengthy pauses,
disfluencies, and speaking rates were continually cited as an
issue for human-voice comments. C3 explained, “it's much
more comfortable to listen to the machine voice for me.
Because the human voice, they have pauses and they [speak]
more slowly.” Even C9, who preferred a human voice in
general, admitted, “the [human voices] had a lot of awkward
pauses. That does follow the natural way of speaking, but
because of that, it also was more difficult and unclear.
There’s a lot of rapid changes in pace. So it’s like a pro and
con.”

Nevertheless, some consumers felt that the benefit of a
standardized voice also imposed an effect on their
engagement. C9 went on to state, “when I am listening to a
machine, it is a little harder to engage […] Because it’s like
a one-tone voice, and one-speed.” In addition, C7 found a
human voice more “soothing” and “easier to pay attention
to” than the “monotone” machine voice. Future work to
transfer prosodic features could remediate or remove this
drawback.

TypeTalker’s improved text output was also appreciated. 9
out of 10 participants found the text useful to their
comprehension of the comment, especially for reminding
them of the audio (the last did not mention the text). In the
human condition, 4 participants cited issues with
SimpleSpeech-produced comments: two (C6, 10) noticed
typos and were “a bit confused (C6)” as to the mismatch
between speech and text, while the other two (C4, 8)
complained about punctuation and grammar. However, two
participants (C5, C1) in the TypeTalker condition also
mentioned correcting minor mis-transcriptions in their
remarks to the commenter, which highlights the addition
burden placed on commenters by ASR accuracy. Many users
could not comment directly on the quality of the text as they
found the quality of speech enough for their understanding.
DISCUSSION
From the findings of our evaluations, we gleamed several
implications for the design of future speech editing
interfaces.
Implications from the trade-offs between human and
standardized voices
Most of participants in our producer study felt that the
synthesized voice sounded more professional whereas the
human voice has a better personal touch. They thought that
the professionalism of TypeTalker comments would be
better received in formal or official settings (e.g., lecture,
audio book publication, etc.), while for other settings, such
as Snapchatting or a lecture in a smaller class, use of their
own voice would fit better, since it can convey character and
personality of the speaker. Interestingly, participants in our
consumer-side study made similar remarks. This implies that
the use-case (or work context) of the speech commenting
system might be one of the deciding factors on which way to
present spoken comments.

Results from our consumer-side study suggest that
standardized voice might enhance the listener’s
comprehension by reducing distracting aspects of speech
such as disfluencies, lengthy natural pauses, and fast
speaking rates. This effect was particularly noticeable for
non-native English speakers, since for them, comprehension
of speech was a priority. This implies that TypeTalker may
enable a more diverse group of individuals to hold a
discussion than that accomplished by recorded voices alone.
This would be especially useful for a multi-cultural CSCW
context. However, more work needs to be done to improve
the naturalness and expressivity of the machine voice, in
order to tackle the trade-off from the loss of personal touch.

Retaining more personal touch from the original speech
Even though the transferred pause timings could convey
temporal subtleties of speech, such as rhythm and suspension
for emphasis, other acoustic qualities remained lost. For
example, transferring natural intonation, prosody, and
loudness of the original speech could make the synthesized
voice sound more similar to the original. The speech
synthesis research community has been presenting a set of
technologies, such has pitch-synchronization [46] or
emotional prosody modelling [40], that could be used to
realize such features.

Hybrid approach: mixing original and synthesized voice
Future designs could take a hybrid approach that takes
different advantages from both of the approaches by
acoustically mixing the synthesized voice with the original
speech. This could enable type-written generation of audio
without having to re-record that part of speech. The latest
speech conversion technique promises seamless stitching of
synthesized voice into an existing speech stream [23]. Also,
a speaker de-identification technique can be used when users
want to anonymize their voice for reduced self-
consciousness [24].

CONCLUSION AND FUTURE WORKS
This paper presents TypeTalker, a multi-modal commenting
system that helps reduce self-consciousness of live voice
recording by substituting a user’s voice for a synthesized one
while respecting the temporal alignment of extra-modal
metadata such as marks and gestures. Our system’s keyboard
based interface supports a variety of revision needs, such as
correcting transcription errors, deleting existing words, and
inserting new words, under a consistent and seamless single-
mode workflow. We evaluated efficacy of TypeTalker in
comparison with SimpleSpeech [41], one of the latest speech
commenting interfaces. Results from the producer-side study
show reduced speech anxiety and more efficient revision
when using TypeTalker, while results from the consumer-
side study suggest the promise of enabling more types of
speakers to communicate effectively.

Finally, our producer evaluation assumed moderately high
ASR accuracy in a quiet lab setting. In reality, multiple
factors can degrade the transcription quality: environmental
noises, unavailability of high quality transcription services,

or non-native speakers. This could have an impact on both
editing time and speech comment consumption. It would be
interesting to explore how the dynamics of design and user
experience change in scenarios where transcription error
rates are high.

ACKNOWLEDGEMENTS
Yoon gratefully acknowledges support from the Kwanjeong
Educational Foundation. This work was supported in part by
gifts from Microsoft.

REFERENCES
1. Stephen Ades and Daniel C Swinehart. 1986. Voice

annotation and editing in a workstation environment.
XEROX Corporation, Palo Alto Research Center.

2. Adobe. 2016. Premiere.
3. Adobe. 2016. Audition.
4. Apple. 2016. Garage Band.
5. Barry Arons. 1993. SpeechSkimmer: Interactively

Skimming Recorded Speech. Proceedings of the 6th
Annual ACM Symposium on User Interface Software
and Technology, ACM, 187–196.

6. Audacity Team. 2016. Audacity.
7. Floraine Berthouzoz, Wilmot Li, and Maneesh

Agrawala. 2012. Tools for placing cuts and transitions
in interview video. ACM Transactions on Graphics 31,
4: 1–8.

8. University of Cambridge. HTK.
9. Juan Casares, A Chris Long, Brad A Myers, et al.

2002. Simplifying video editing using metadata.
Proceedings of the conference on Designing interactive
systems processes practices methods and techniques
DIS 02: 157–166.

10. Barbara L. Chalfonte, Robert S. Fish, and Robert E.
Kraut. 1991. Expressive richness: A COMPARISON
OF SPEECH AND TEXT AS MEDIA FOR
REVISION. Proceedings of the SIGCHI conference on
Human factors in computing systems Reaching through
technology - CHI ’91, ACM Press, 21–26.

11. Herbert H Clark. 1996. Using Language.
12. By John W Creswell, Vicki L Piano, and Clark

Published. 2007. Designing and Conducting Mixed
Methods Research. Australian and New Zealand
Journal of Public Health 31, 4: 388–388.

13. Richard L. Daft and Robert H. Lengel. 1986.
Organizational Information Requirements, Media
Richness and Structural Design. Management Science
32, 5: 554–571.

14. R. Fruchter and Samuel Yen. RECALL in Action.
Computing in Civil and Building Engineering (2000),
ASCE, 1012–1020.

15. Barney G Glaser and Anselm L Strauss. 1967. The
discovery of grounded theory. International Journal of
Qualitative Methods 5: 1–10.

16. Gene Golovchinsky and Laurent Denoue. 2002.
Moving markup: Repositioning Freeform Annotations.
Proceedings of the 15th annual ACM symposium on
User interface software and technology - UIST ’02,
ACM Press, 21.

17. Jonathan Grudin. 1988. Why CSCW applications fail:
problems in the design and evaluationof organizational
interfaces. Proceedings of the 1988 ACM conference
on Computer-supported cooperative work, ACM Press,
85–93.

18. Sandra G. Hart and Lowell E. Staveland. 1988.
Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research.
Advances in Psychology 52, C: 139–183.

19. Khe Foon Hew and Wing Sum Cheung. 2013. Audio-
based versus text-based asynchronous online
discussion: Two case studies. Instructional Science 41,
2: 365–380.

20. Debby Hindus and Chris Schmandt. 1992. Ubiquitous
audio: Capturing Spontaneous Collaboration.
Proceedings of the 1992 ACM conference on
Computer-supported cooperative work - CSCW ’92,
ACM Press, 210–217.

21. Philip S. Holzman and Clyde Rousey. 1966. The voice
as a percept. Journal of Personality and Social
Psychology 4, 1: 79–86.

22. Inc. IBM. IBM Bluemix.
23. G. J. Jin, Z., Finkelstein, A., DiVerdi, S., Lu, J., and

Mysore. 2016. CUTE: a concatenative method for
voice conversion using exemplar-based unit selection.
In 41st IEEE International Conference on Acoustics
Speech and Signal Processing, IEEE.

24. Qin Jin, Arthur R. Toth, Tanja Schultz, and Alan W.
Black. 2009. Speaker de-identification via voice
transformation. Proceedings of the 2009 IEEE
Workshop on Automatic Speech Recognition and
Understanding, ASRU 2009, 529–533.

25. Juho Kim, Elena L. Glassman, Andrés Monroy-
Hernández, and Meredith Ringel Morris. 2015.
RIMES: Embedding Interactive Multimedia Exercises
in Lecture Videos. Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems - CHI ’15, ACM, 1535–1544.

26. Stephen R Levine and Susan F Ehrlich. 1991. The
Freestyle System. In Human-Machine Interactive
Systems. Springer, 3–21.

27. Guang Li, Xiang Cao, Sergio Paolantonio, and Feng
Tian. 2012. SketchComm. Proceedings of the ACM
2012 conference on Computer Supported Cooperative
Work - CSCW ’12, ACM Press, 359.

28. J Lofland and L Lofland. 1971. Analyzing social
settings. Belmont, CA: Wadsworth.

29. Philip Marriott. 2002. Voice vs text-based discussion
forums: An implementation of Wimba Voice Boards.
World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education, 640–
646.

30. Joseph A Maxwell. 2013. Qualitative research design:
An interactive approach. In Qualitative research
design: An interactive approach. 23–38.

31. Cosmin Munteanu, Ronald Baecker, Gerald Penn,
Elaine Toms, and David James. 2006. The effect of
speech recognition accuracy rates on the usefulness and
usability of webcast archives. Proc. CHI ’06, ACM
Press: 493-502.

32. Eugene W. Myers. 1986. An O(ND) difference
algorithm and its variations. Algorithmica 1, 1–4: 251–
266.

33. Yingxin Pan, Danning Jiang, Michael Picheny, and
Yong Qin. 2009. Effects of real-time transcription on
non-native speaker’s comprehension in computer-
mediated communications. Proceedings of the 27th
international conference on Human factors in
computing systems - CHI ’09, 2353-2356.

34. Jennifer Pearson, Simon Robinson, and Matt Jones.
2015. PaperChains: Dynamic Sketch+Voice
Annotations. Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social
Computing - CSCW ’15, ACM, 383–392.

35. Jeff Raskin. 2000. The Humane Interface: New
Directions for Designing Interactive Systems.

36. Steve Rubin, Floraine Berthouzoz, Gautham J. Mysore,
Wilmot Li, and Maneesh Agrawala. 2013. Content-
based tools for editing audio stories. Proceedings of the
26th annual ACM symposium on User interface
software and technology - UIST ’13, ACM Press, 113–
122.

37. Michael F. Scheier and Charles S. Carver. 1985. The
Self-Consciousness Scale: A Revised Version for Use
with General Populations. Journal of Applied Social
Psychology 15, 687–699.

38. C Schmandt. 1981. The intelligent ear: A graphical
interface to digital audio. … , IEEE International
Conference on Cybernetics and ….

39. Jeremiah Scholl, John McCarthy, and Rikard Harr.
2006. A comparison of chat and audio in media rich
environments. Proceedings of ACM CSCW’06
Conference on Computer-Supported Cooperative
Work: 323–332.

40. Marc Schröder. 2001. Emotional Speech Synthesis: A
Review. INTERSPEECH, 561–564.

41. Venkatesh Sivaraman, Dongwook Yoon, and Piotr
Mitros. 2016. Simplified Audio Production in
Asynchronous Voice-Based Discussions. Proceedings
of the 2016 ACM Conference on Human Factors in
Computing Systems.

42. Hagen Soltau, George Saon, and Tara N. Sainath.
2014. Joint training of convolutional and non-
convolutional neural networks. ICASSP, IEEE
International Conference on Acoustics, Speech and
Signal Processing - Proceedings, 5572–5576.

43. LA Stark, S Whittaker, and J Hirschberg. 2000. ASR
satisficing: the effects of ASR accuracy on speech
retrieval. INTERSPEECH.

44. Lisa Stifelman, Barry Arons, and Chris Schmandt.
2001. The Audio Notebook: Paper and Pen Interaction
with Structured Speech. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM Press, 182–189.

45. Michael Tsang, George W Fitzmaurice, Gordon
Kurtenbach, Azam Khan, and Bill Buxton. 2002. Boom
Chameleon: Simultaneous Capture of 3D Viewpoint,
Voice and Gesture Annotations on a Spatially-aware
Display. Proceedings of the 15th Annual ACM
Symposium on User Interface Software and
Technology, ACM, 111–120.

46. H. Valbret, E. Moulines, and J. P. Tubach. 1992. Voice
transformation using PSOLA technique. Speech
Communication 11, 2–3: 175–187.

47. Sunil Vemuri, Philip DeCamp, Walter Bender, and
Chris Schmandt. 2004. Improving speech playback
using time-compression and speech recognition.
Proceedings of the 2004 conference on Human factors
in computing systems - CHI ’04, ACM Press, 295–302.

48. QianYing Wang and Clifford Nass. 2005. Less Visible
and Wireless: Two Experiments on the Effects of
Microphone Type on Users’ Performance and
Perception. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, 809–
818.

49. Steve Whittaker and Brian Amento. 2004. Semantic
speech editing. Proceedings of the 2004 conference on
Human factors in computing systems - CHI ’04, ACM
Press, 527–534.

50. Steve Whittaker, Erik Geelhoed, and Elizabeth
Robinson. 1993. Shared workspaces: how do they work
and when are they useful? International Journal of
Man-Machine Studies 39, 5: 813–842.

51. Steve Whittaker, Julia Hirschberg, Brian Amento, et al.
2002. SCANMail: a voicemail interface that makes
speech browsable, readable and searchable.
Proceedings of the SIGCHI conference on Human
factors in computing systems Changing our world,
changing ourselves - CHI ’02, ACM Press, 275.

52. Steve Whittaker, Patrick Hyland, and Myrtle Wiley.
1994. Filochat: handwritten notes provide access to
recorded conversations. Proceedings of the SIGCHI
conference on Human factors in computing systems
celebrating interdependence - CHI ’94, ACM Press,
271–277.

53. Lynn D. Wilcox, Bill N. Schilit, and Nitin Sawhney.
1997. Dynomite: a dynamically organized ink and
audio notebook. Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI ’97, ACM Press, 186–193.

54. Dongwook Yoon, Nicholas Chen, François
Guimbretière, and Abigail Sellen. 2014. RichReview:
Blending Ink, Speech, and Gesture to Support
Collaborative Document Review. Proceedings of the
27th Annual ACM Symposium on User Interface
Software and Technology, ACM, 481–490.

55. Dongwook Yoon, Nicholas Chen, Bernie Randles, et
al. 2016. RichReview++: Deployment of a
Collaborative Multi-modal Annotation System for
Instructor Feedback and Peer Discussion. Proceedings
of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing, 195–205.

